All Publications

  • Advances in the synthesis, characterisation, and mechanistic understanding of active sites in Fezeolites for redox catalysts DALTON TRANSACTIONS Bols, M. L., Rhoda, H. M., Snyder, B. R., Solomon, E., Pierloot, K., Schoonheydt, R. A., Sels, B. F. 2020; 49 (42): 14749–57


    The recent research developments on the active sites in Fe-zeolites for redox catalysis are discussed. Building on the characterisation of the α-Fe/α-O active sites in the beta and chabazite zeolites, we demonstrate a bottom-up approach to successfully understand and develop Fe-zeolite catalysts. We use the room temperature benzene to phenol reaction as a relevant example. We then suggest how the spectroscopic identification of other monomeric and dimeric iron sites could be tackled. The challenges in the characterisation of active sites and intermediates in NOX selective catalytic reduction catalysts and further development of catalysts for mild partial methane oxidation are briefly discussed.

    View details for DOI 10.1039/d0dt01857k

    View details for Web of Science ID 000589506700038

    View details for PubMedID 33140781

  • Oxygen intermediates in Cu and Fe zeolites: Correlations to metalloenzymes Solomon, E., Snyder, B., Rhoda, H. AMER CHEMICAL SOC. 2019
  • Mechanism of selective benzene hydroxylation catalyzed by iron-containing zeolites. Proceedings of the National Academy of Sciences of the United States of America Snyder, B. E., Bols, M. L., Rhoda, H. M., Vanelderen, P., Bottger, L. H., Braun, A., Yan, J. J., Hadt, R. G., Babicz, J. T., Hu, M. Y., Zhao, J., Alp, E. E., Hedman, B., Hodgson, K. O., Schoonheydt, R. A., Sels, B. F., Solomon, E. I. 2018


    A direct, catalytic conversion of benzene to phenol would have wide-reaching economic impacts. Fe zeolites exhibit a remarkable combination of high activity and selectivity in this conversion, leading to their past implementation at the pilot plant level. There were, however, issues related to catalyst deactivation for this process. Mechanistic insight could resolve these issues, and also provide a blueprint for achieving high performance in selective oxidation catalysis. Recently, we demonstrated that the active site of selective hydrocarbon oxidation in Fe zeolites, named alpha-O, is an unusually reactive Fe(IV)=O species. Here, we apply advanced spectroscopic techniques to determine that the reaction of this Fe(IV)=O intermediate with benzene in fact regenerates the reduced Fe(II) active site, enabling catalytic turnover. At the same time, a small fraction of Fe(III)-phenolate poisoned active sites form, defining a mechanism for catalyst deactivation. Density-functional theory calculations provide further insight into the experimentally defined mechanism. The extreme reactivity of alpha-O significantly tunes down (eliminates) the rate-limiting barrier for aromatic hydroxylation, leading to a diffusion-limited reaction coordinate. This favors hydroxylation of the rapidly diffusing benzene substrate over the slowly diffusing (but more reactive) oxygenated product, thereby enhancing selectivity. This defines a mechanism to simultaneously attain high activity (conversion) and selectivity, enabling the efficient oxidative upgrading of inert hydrocarbon substrates.

    View details for PubMedID 30429333

  • Spectroscopic Identification of the alpha-Fe/alpha-O Active Site in Fe-CHA Zeolite for the Low-Temperature Activation of the Methane C-H Bond JOURNAL OF THE AMERICAN CHEMICAL SOCIETY Bols, M. L., Hallaert, S. D., Snyder, B. R., Devos, J., Plessers, D., Rhoda, H. M., Dusselier, M., Schoonheydt, R. A., Pierloot, K., Solomon, E., Sels, B. F. 2018; 140 (38): 12021–32


    The formation of single-site α-Fe in the CHA zeolite topology is demonstrated. The site is shown to be active in oxygen atom abstraction from N2O to form a highly reactive α-O, capable of methane activation at room temperature to form methanol. The methanol product can subsequently be desorbed by online steaming at 200 °C. For the intermediate steps of the reaction cycle, the evolution of the Fe active site is monitored by UV-vis-NIR and Mössbauer spectroscopy. A B3LYP-DFT model of the α-Fe site in CHA is constructed, and the ligand field transitions are calculated by CASPT2. The model is experimentally substantiated by the preferential formation of α-Fe over other Fe species, the requirement of paired framework aluminum and a MeOH/Fe ratio indicating a mononuclear active site. The simple CHA topology is shown to mitigate the heterogeneity of iron speciation found on other Fe-zeolites, with Fe2O3 being the only identifiable phase other than α-Fe formed in Fe-CHA. The α-Fe site is formed in the d6r composite building unit, which occurs frequently across synthetic and natural zeolites. Finally, through a comparison between α-Fe in Fe-CHA and Fe-*BEA, the topology's 6MR geometry is found to influence the structure, the ligand field, and consequently the spectroscopy of the α-Fe site in a predictable manner. Variations in zeolite topology can thus be used to rationally tune the active site properties.

    View details for PubMedID 30169036

  • Structural characterization of a non-heme iron active site in zeolites that hydroxylates methane PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Snyder, B. R., Bottger, L. H., Bols, M. L., Yan, J. J., Rhoda, H. M., Jacobs, A. B., Hu, M. Y., Zhao, J., Alp, E., Hedman, B., Hodgson, K. O., Schoonheydt, R. A., Sels, B. F., Solomon, E. I. 2018; 115 (18): 4565–70


    Iron-containing zeolites exhibit unprecedented reactivity in the low-temperature hydroxylation of methane to form methanol. Reactivity occurs at a mononuclear ferrous active site, α-Fe(II), that is activated by N2O to form the reactive intermediate α-O. This has been defined as an Fe(IV)=O species. Using nuclear resonance vibrational spectroscopy coupled to X-ray absorption spectroscopy, we probe the bonding interaction between the iron center, its zeolite lattice-derived ligands, and the reactive oxygen. α-O is found to contain an unusually strong Fe(IV)=O bond resulting from a constrained coordination geometry enforced by the zeolite lattice. Density functional theory calculations clarify how the experimentally determined geometric structure of the active site leads to an electronic structure that is highly activated to perform H-atom abstraction.

    View details for PubMedID 29610304