Stanford Advisors


All Publications


  • New divergent dynamics in the isotropic to nematic phase transition of liquid crystals measured with 2D IR vibrational echo spectroscopy JOURNAL OF CHEMICAL PHYSICS Sokolowsky, K. P., Bailey, H. E., Fayer, M. D. 2014; 141 (19)

    View details for DOI 10.1063/1.4901081

    View details for Web of Science ID 000345514700026

  • Length Scales and Structural Dynamics in Nematogen Pseudonematic Domains Measured with 2D IR Vibrational Echoes and Optical Kerr Effect Experiments. journal of physical chemistry. B Sokolowsky, K. P., Bailey, H. E., Fayer, M. D. 2014; 118 (28): 7856-7868

    Abstract

    Nematogen liquids in the isotropic phase are macroscopically homogeneous but on multinanometer length scales have pseudonematic domains with correlation lengths that grow as the isotropic to nematic phase transition temperature (TNI) is approached from above. Orientational relaxation of nematogens in the isotropic phase manifests as two fast power laws and a slow exponential decay when measured by optical heterodyne detected optical Kerr effect (OHD-OKE) experiments. The long time exponential relaxation is associated with complete randomization of pseudonematic domains. We examine the effect of local orientational correlation on spectral diffusion (structural evolution) experienced by a vibrational probe molecule within the pseudonematic domains of 4-cyano-4'-pentylbiphenyl (5CB) using two-dimensional infrared (2D IR) vibrational echo spectroscopy. The addition of low concentration 4-pentyl-4'-thiocyanobiphenyl (5SCB) as a long-lived vibrational probe to 5CB is shown to lower TNI of the sample slightly, but the fast power law dynamics and exponential decays observed by OHD-OKE spectroscopy are unchanged. We compare the complete orientational relaxation and spectral diffusion for samples of 5SCB in 5CB to 5SCB in 4-pentylbiphenyl (5B) at four temperatures above TNI. 5B has a molecular structure similar to 5CB but is not a nematogen. At all but the lowest temperature, the spectral diffusion in 5CB and 5B is described well as a triexponential decay with very similar time constants. The results demonstrate that the presence of local orientational order at temperatures well above TNI does not affect the spectral diffusion (structural evolution) within pseudonematic domains when the correlation lengths are short. However, when the temperature of the sample is held very close to TNI, the spectral diffusion in 5CB slows dramatically while that in 5B does not. It is only as the correlation length becomes very long that its presence impacts the spectral diffusion (structural fluctuations) sensed by the vibrational probes located in pseudonematic domains. The orientational relaxation is modeled with schematic mode coupling theory (MCT). Fitting with MCT provides density and orientational correlation functions. The density correlation decays are similar for 5B and 5CB, but the orientational correlation decays are much slower for 5CB. Additionally, the time dependence of the spectral diffusion in 5CB is strikingly similar to that of the density correlation function decay, while the orientational correlation function decay is far too slow to contribute to the spectral diffusion. Therefore, density fluctuations are likely the source of spectral diffusion at temperatures at least 5 K above TNI.

    View details for DOI 10.1021/jp500144p

    View details for PubMedID 24521155

  • Orientational Dynamics in a Lyotropic Room Temperature Ionic Liquid JOURNAL OF PHYSICAL CHEMISTRY B Sturlaugson, A. L., Arima, A. Y., Bailey, H. E., Fayer, M. D. 2013; 117 (47): 14775-14784

    View details for DOI 10.1021/jp407325b

    View details for Web of Science ID 000330160100020

    View details for PubMedID 24171452

  • Orientational dynamics in a lyotropic room temperature ionic liquid. journal of physical chemistry. B Sturlaugson, A. L., Arima, A. Y., Bailey, H. E., Fayer, M. D. 2013; 117 (47): 14775-14784

    Abstract

    In a previous study of room temperature ionic liquid/water mixtures, the first clearly observed biexponential decays in optical heterodyne-detected optical Kerr effect (OHD-OKE) experiments on a liquid were reported, (Sturlaugson, A. L.; Fruchey, K. S.; Fayer, M. D. J. Phys. Chem. B 2012, 116, 1777), and it was suggested that the biexponential behavior is indicative of the approach to gelation. Here, new OHD-OKE experiments on mixtures of the room temperature ionic liquid 1-methyl-3-octylimidazolium chloride (OmimCl) with water are presented. The OmimCl/water system is shown to gel over the water mole fraction range of 0.69-0.81. In the OHD-OKE decays, the biexponential behavior becomes more distinct as the gelling concentration range is approached from either high or low water concentrations. The biexponential decays are analyzed in terms of the wobbling-in-a-cone model, and the resulting diffusion constants and "relative" order parameters and cone angles are reported. Comparison of the OmimCl/water data with the previously reported room temperature ionic liquid/water OHD-OKE decays supports the previous hypothesis that the biexponential dynamics are due to the approach to the liquid-gel transition and suggests that the order of the concentration-dependent phase transition can be tuned by the choice of anion.

    View details for DOI 10.1021/jp407325b

    View details for PubMedID 24171452