All Publications


  • A Nickel-Decorated Carbon Flower/Sulfur Cathode for Lean-Electrolyte Lithium-Sulfur Batteries ADVANCED ENERGY MATERIALS Tsao, Y., Gong, H., Chen, S., Chen, G., Liu, Y., Gao, T. Z., Cui, Y., Bao, Z. 2021
  • A Cation-Tethered Flowable Polymeric Interface for Enabling Stable Deposition of Metallic Lithium. Journal of the American Chemical Society Huang, Z., Choudhury, S., Gong, H., Cui, Y., Bao, Z. 2020

    Abstract

    A fundamental challenge, shared across many energy storage devices, is the complexity of electrochemistry at the electrode-electrolyte interfaces that impacts the Coulombic efficiency, operational rate capability, and lifetime. Specifically, in energy-dense lithium metal batteries, the charging/discharging process results in structural heterogeneities of the metal anode, leading to battery failure by short-circuit and capacity fade. In this work, we take advantage of organic cations with lower reduction potential than lithium to build an electrically responsive polymer interface that not only adapts to morphological perturbations during electrodeposition and stripping but also modulates the lithium ion migration pathways to eliminate surface roughening. We find that this concept can enable prolonging the long-term cycling of a high-voltage lithium metal battery by at least twofold compared to bare lithium metal.

    View details for DOI 10.1021/jacs.0c09649

    View details for PubMedID 33314926

  • Dense Carbon Nanoflower Pellets for Methane Storage ACS APPLIED NANO MATERIALS Chen, S., Gong, H., Dindoruk, B., He, J., Bao, Z. 2020; 3 (8): 8278–85
  • A Carbon Flower Based Flexible Pressure Sensor Made from Large-Area Coating ADVANCED MATERIALS INTERFACES O'Neill, S. K., Gong, H., Matsuhisa, N., Chen, S., Moon, H., Wu, H., Chen, X., Chen, X., Bao, Z. 2020
  • F4-TCNQ as an Additive to Impart Stretchable Semiconductors with High Mobility and Stability ADVANCED ELECTRONIC MATERIALS Mun, J., Kang, J., Zheng, Y., Luo, S., Wu, Y., Gong, H., Lai, J., Wu, H., Xue, G., Tok, J., Bao, Z. 2020
  • On-demand production of hydrogen by reacting porous silicon nanowires with water NANO RESEARCH Ning, R., Jiang, Y., Zeng, Y., Gong, H., Zhao, J., Weisse, J., Shi, X., Gill, T. M., Zheng, X. 2020