All Publications

  • A thermophysical battery for storage-based climate control APPLIED ENERGY Narayanan, S., Kim, H., Umans, A., Yang, S., Li, X., Schiffres, S. N., Rao, S. R., Mckay, I. S., Perez, C. A., Hidrovo, C. H., Wang, E. N. 2017; 189: 31-43
  • Elucidating the synergistic mechanism of nickel-molybdenum electrocatalysts for the hydrogen evolution reaction MRS COMMUNICATIONS Mckay, I. S., Schwalbe, J. A., Goodman, E. D., Willis, J. J., Majumdar, A., Cargnello, M. 2016; 6 (3): 241-246
  • Engineering titania nanostructure to tune and improve its photocatalytic activity PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Cargnello, M., Montini, T., Smolin, S. Y., Priebe, J. B., Jaen, J. J., Doan-Nguyen, V. V., Mckay, I. S., Schwalbe, J. A., Pohl, M., Gordon, T. R., Lu, Y., Baxter, J. B., Brueckner, A., Fornasiero, P., Murray, C. B. 2016; 113 (15): 3966-3971


    Photocatalytic pathways could prove crucial to the sustainable production of fuels and chemicals required for a carbon-neutral society. Electron-hole recombination is a critical problem that has, so far, limited the efficiency of the most promising photocatalytic materials. Here, we show the efficacy of anisotropy in improving charge separation and thereby boosting the activity of a titania (TiO2) photocatalytic system. Specifically, we show that H2 production in uniform, one-dimensional brookite titania nanorods is highly enhanced by engineering their length. By using complimentary characterization techniques to separately probe excited electrons and holes, we link the high observed reaction rates to the anisotropic structure, which favors efficient carrier utilization. Quantum yield values for hydrogen production from ethanol, glycerol, and glucose as high as 65%, 35%, and 6%, respectively, demonstrate the promise and generality of this approach for improving the photoactivity of semiconducting nanostructures for a wide range of reacting systems.

    View details for DOI 10.1073/pnas.1524806113

    View details for Web of Science ID 000373762400034

    View details for PubMedID 27035977

    View details for PubMedCentralID PMC4839447