Professional Education


  • Doctor of Philosophy, Vanderbilt University (2018)
  • Bachelor of Science, University of California Los Angeles (2013)

Stanford Advisors


All Publications


  • Endocardial/endothelial angiocrines regulate cardiomyocyte development and maturation and induce features of ventricular non-compaction. European heart journal Rhee, S., Paik, D. T., Yang, J. Y., Nagelberg, D., Williams, I., Tian, L., Roth, R., Chandy, M., Ban, J., Belbachir, N., Kim, S., Zhang, H., Phansalkar, R., Wong, K. M., King, D. A., Valdez, C., Winn, V. D., Morrison, A. J., Wu, J. C., Red-Horse, K. 2021

    Abstract

    AIMS: Non-compaction cardiomyopathy is a devastating genetic disease caused by insufficient consolidation of ventricular wall muscle that can result in inadequate cardiac performance. Despite being the third most common cardiomyopathy, the mechanisms underlying the disease, including the cell types involved, are poorly understood. We have previously shown that endothelial cell-specific deletion of the chromatin remodeller gene Ino80 results in defective coronary vessel development that leads to ventricular non-compaction in embryonic mouse hearts. We aimed to identify candidate angiocrines expressed by endocardial and ECs inwildtype and LVNC conditions in Tie2Cre;Ino80fl/fl transgenic embryonic mouse hearts, and test the effect of these candidates on cardiomyocyte proliferation and maturation.METHODS AND RESULTS: We used single-cell RNA-sequencing to characterize endothelial and endocardial defects in Ino80-deficient hearts. We observed a pathological endocardial cell population in the non-compacted hearts and identified multiple dysregulated angiocrine factors that dramatically affected cardiomyocyte behaviour. We identified Col15A1 as a coronary vessel-secreted angiocrine factor, downregulated by Ino80-deficiency, that functioned to promote cardiomyocyte proliferation. Furthermore, mutant endocardial and endothelial cells (ECs) up-regulated expression of secreted factors, such as Tgfbi, Igfbp3, Isg15, and Adm, which decreased cardiomyocyte proliferation and increased maturation.CONCLUSIONS: These findings support a model where coronary ECs normally promote myocardial compaction through secreted factors, but that endocardial and ECs can secrete factors that contribute to non-compaction under pathological conditions.

    View details for DOI 10.1093/eurheartj/ehab298

    View details for PubMedID 34279605

  • Dach1 Extends Artery Networks and Protects Against Cardiac Injury. Circulation research Raftrey, B., Williams, I. M., Rios Coronado, P. E., Fan, X., Chang, A. H., Zhao, M., Roth, R. K., Trimm, E., Racelis, R., D'Amato, G., Phansalkar, R., Nguyen, A., Chai, T., Gonzalez, K. M., Zhang, Y., Ang, L. T., Loh, K., Bernstein, D., Red-Horse, K. 2021

    Abstract

    Rationale: Coronary artery disease (CAD) is the leading cause of death worldwide, but there are currently no methods to stimulate artery growth or regeneration in diseased hearts. Studying how arteries are built during development could illuminate strategies for re-building these vessels during ischemic heart disease. We previously found that Dach1 deletion in mouse embryos resulted in small coronary arteries. However, it was not known whether Dach1 gain-of-function would be sufficient to increase arterial vessels and whether this could benefit injury responses. Objective: We investigated how Dach1 overexpression in endothelial cells affected transcription and artery differentiation, and how it influenced recovery from myocardial infarction (MI). Methods and Results: Dach1 was genetically overexpressed in coronary endothelial cells (ECs) in either developing or adult hearts using ApjCreER. This increased the length and number of arterial end branches expanded arteries during development, in both the heart and retina, by inducing capillary ECs to differentiate and contribute to growing arteries. Single-cell RNA sequencing (scRNAseq) of ECs undergoing Dach1-induced arterial specification indicated that it potentiated normal artery differentiation, rather than functioning as a master regulator of artery cell fate. ScRNAseq also showed that normal arterial differentiation is accompanied by repression of lipid metabolism genes, which were also repressed by Dach1. In adults, Dach1 overexpression did not cause a statistically significant change artery structure prior to injury, but increased the number of perfused arteries in the injury zone post-MI. Conclusions: Our data demonstrate that increasing Dach1 is a novel method for driving artery specification and extending arterial branches, which could be explored as a means of mitigating the effects of CAD.

    View details for DOI 10.1161/CIRCRESAHA.120.318271

    View details for PubMedID 34383559

  • Single-Cell RNA-seq Unveils Unique Transcriptomic Signatures of Organ-Specific Endothelial Cells. Circulation Paik, D. T., Tian, L., Williams, I. M., Rhee, S., Zhang, H., Liu, C., Mishra, R., Wu, S. M., Red-Horse, K., Wu, J. C. 2020

    Abstract

    Background: Endothelial cells (ECs) display considerable functional heterogeneity depending on the vessel and tissue in which they are located. While these functional differences are presumably imprinted in the transcriptome, the pathways and networks which sustain EC heterogeneity have not been fully delineated. Methods: To investigate the transcriptomic basis of EC specificity, we analyzed single-cell RNA-sequencing (scRNA-seq) data from tissue-specific mouse ECs generated by the Tabula Muris consortium. We employed a number of bioinformatics tools to uncover markers and sources of EC heterogeneity from scRNA-seq data. Results: We found a strong correlation between tissue-specific EC transcriptomic measurements generated by either scRNA-seq or bulk RNA-seq, thus validating the approach. Using a graph-based clustering algorithm, we found that certain tissue-specific ECs cluster strongly by tissue (e.g. liver, brain) whereas others (i.e. adipose, heart) have considerable transcriptomic overlap with ECs from other tissues. We identified novel markers of tissue-specific ECs and signaling pathways that may be involved in maintaining their identity. Sex was a considerable source of heterogeneity in the endothelial transcriptome and we discovered Lars2 to be a gene that is highly enriched in ECs from male mice. In addition, we found that markers of heart and lung ECs in mice were conserved in human fetal heart and lung ECs. Finally, we identified potential angiocrine interactions between tissue-specific ECs and other cell types by analyzing ligand and receptor expression patterns. Conclusions: In summary, we use scRNA-seq data generated by the Tabula Muris consortium to uncover transcriptional networks that maintain tissue-specific EC identity and to identify novel angiocrine and functional relationships between tissue-specific ECs.

    View details for DOI 10.1161/CIRCULATIONAHA.119.041433

    View details for PubMedID 32929989

  • Single-Cell RNA-seq Unveils Unique Transcriptomic Signatures of Organ-Specific Endothelial Cells Paik, D. T., Tian, L., Williams, I. M., Zhang, H., Williams, D., Mishra, R., Wu, S. M., Wu, J. C. LIPPINCOTT WILLIAMS & WILKINS. 2019
  • Generation of Endothelial Cells From Human Pluripotent Stem Cells. Arteriosclerosis, thrombosis, and vascular biology Williams, I. M., Wu, J. C. 2019; 39 (7): 1317–29

    Abstract

    Endothelial cells (ECs) are critical for several aspects of cardiovascular disease therapy, including vascular regeneration, personalized drug development, and tissue engineering. Human pluripotent stem cells (hPSCs) afford us with an unprecedented opportunity to produce virtually unlimited quantities of human ECs. In this review, we highlight key developments and outstanding challenges in our ability to derive ECs de novo from hPSCs. Furthermore, we consider strategies for recapitulating the vessel- and tissue-specific functional heterogeneity of ECs in vitro. Finally, we discuss ongoing attempts to utilize hPSC-derived ECs and their progenitors for various therapeutic applications. Continued progress in generating hPSC-derived ECs will profoundly enhance our ability to discover novel drug targets, revascularize ischemic tissues, and engineer clinically relevant tissue constructs. Visual Overview- An online visual overview is available for this article.

    View details for DOI 10.1161/ATVBAHA.119.312265

    View details for PubMedID 31242035