Jason Rodencal
Ph.D. Student in Cancer Biology, admitted Autumn 2017
All Publications
-
A Tale of Two Lipids: Lipid Unsaturation Commands Ferroptosis Sensitivity.
Proteomics
2022: e2100308
Abstract
Membrane lipids play important roles in the regulation of cell fate, including the execution of ferroptosis. Ferroptosis is a non-apoptotic cell death mechanism defined by iron-dependent membrane lipid peroxidation. Phospholipids containing polyunsaturated fatty acids (PUFAs) are highly vulnerable to peroxidation and are essential for ferroptosis execution. By contrast, the incorporation of less oxidizable monounsaturated fatty acids (MUFAs) in membrane phospholipids protects cells from ferroptosis. The enzymes and pathways that govern PUFA and MUFA metabolism therefore play a critical role in determining cellular sensitivity to ferroptosis. Here, we review three lipid metabolic processes fatty acid biosynthesis, ether lipid biosynthesis, and phospholipid remodeling-that govern ferroptosis sensitivity by regulating the balance of PUFAs and MUFAs in membrane phospholipids. This article is protected by copyright. All rights reserved.
View details for DOI 10.1002/pmic.202100308
View details for PubMedID 36398995
-
Oxaliplatin disrupts nucleolar function through biophysical disintegration.
Cell reports
2022; 41 (6): 111629
Abstract
Platinum (Pt) compounds such as oxaliplatin are among the most commonly prescribed anti-cancer drugs. Despite their considerable clinical impact, the molecular basis of platinum cytotoxicity and cancer specificity remain unclear. Here we show that oxaliplatin, a backbone for the treatment of colorectal cancer, causes liquid-liquid demixing of nucleoli at clinically relevant concentrations. Our data suggest that this biophysical defect leads to cell-cycle arrest, shutdown of Pol I-mediated transcription, and ultimately cell death. We propose that instead of targeting a single molecule, oxaliplatin preferentially partitions into nucleoli, where it modifies nucleolar RNA and proteins. This mechanism provides a general approach for drugging the increasing number of cellular processes linked to biomolecular condensates.
View details for DOI 10.1016/j.celrep.2022.111629
View details for PubMedID 36351392
-
Nucleotide biosynthesis links glutathione metabolism to ferroptosis sensitivity.
Life science alliance
1800; 5 (4)
Abstract
Nucleotide synthesis is a metabolically demanding process essential for DNA replication and other processes in the cell. Several anticancer drugs that inhibit nucleotide metabolism induce apoptosis. How inhibition of nucleotide metabolism impacts non-apoptotic cell death is less clear. Here, we report that inhibition of nucleotide metabolism by the p53 pathway is sufficient to suppress the non-apoptotic cell death process of ferroptosis. Mechanistically, stabilization of wild-type p53 and induction of the p53 target gene CDKN1A (p21) leads to decreased expression of the ribonucleotide reductase (RNR) subunits RRM1 and RRM2 RNR is the rate-limiting enzyme of de novo nucleotide synthesis that reduces ribonucleotides to deoxyribonucleotides in a glutathione-dependent manner. Direct inhibition of RNR results in conservation of intracellular glutathione, limiting the accumulation of toxic lipid peroxides and preventing the onset of ferroptosis in response to cystine deprivation. These results support a mechanism linking p53-dependent regulation of nucleotide metabolism to non-apoptotic cell death.
View details for DOI 10.26508/lsa.202101157
View details for PubMedID 35074928
-
Positive feedback amplifies ferroptosis.
Nature cell biology
1800; 24 (1): 4-5
View details for DOI 10.1038/s41556-021-00824-5
View details for PubMedID 35027732
-
Quantification of drug-induced fractional killing using high-throughput microscopy.
STAR protocols
2021; 2 (1): 100300
Abstract
Anti-cancer drugs kill only a fraction of cells within a population at any given time. Here, we describe a protocol to quantify drug-induced fractional killing over time using high-throughput imaging. This protocol can be used to compare the effect of hundreds of conditions in parallel. We show how this protocol can be used to examine fractional killing in response to inhibitors of the mitogen-activated protein kinase pathway. For complete details on the use and execution of this protocol, please refer to Inde etal. (2020).
View details for DOI 10.1016/j.xpro.2021.100300
View details for PubMedID 33532743
-
TAp63-regulated microRNAs suppress cutaneous squamous cell carcinoma through inhibition of a network of cell cycle genes.
Cancer research
2020
Abstract
TAp63 is a p53 family member and potent tumor and metastasis suppressor. Here, we show that TAp63-/- mice exhibit an increased susceptibility to UVR-induced cutaneous squamous cell carcinoma (cuSCC). A human-to-mouse comparison of cuSCC tumors identified miR-30c-2* and miR-497 as underexpressed in TAp63-deficient cuSCC. Reintroduction of these microRNAs significantly inhibited the growth of cuSCC cell lines and tumors. Proteomic profiling of cells expressing either microRNA showed downregulation of cell cycle progression and mitosis associated proteins. A mouse to human and cross-platform comparison of RNA-Seq and proteomics data identified a 7-gene signature, including AURKA, KIF18B, PKMYT1, and ORC1, which were overexpressed in cuSCC. Knockdown of these factors in cuSCC cell lines suppressed tumor cell proliferation and induced apoptosis. Additionally, selective inhibition of AURKA suppressed cuSCC cell proliferation, induced apoptosis, and showed anti-tumor effects in vivo. Finally, treatment with miR-30c-2* or miR-497 microRNA mimics was highly effective in suppressing cuSCC growth in vivo. Our data establishes TAp63 as an essential regulator of novel microRNAs that can be therapeutically targeted for potent suppression of cuSCC.
View details for DOI 10.1158/0008-5472.CAN-19-1892
View details for PubMedID 32156775