Stanford Advisors


All Publications


  • Shock Tube Measurement of the C2H4 + H double left right arrow C2H3 + H-2 Rate Constant JOURNAL OF PHYSICAL CHEMISTRY A Shao, J., Choudhary, R., Peng, Y., Davidson, D. F., Hanson, R. K. 2019; 123 (1): 15–20

    Abstract

    The rate constant for the reaction C2H4+H⇒C2H3+H2 was studied behind reflected shock waves at temperatures between 1619 and 1948 K and pressures near 10 atm in a mixture of C2H4, CH4, H2, and argon. C2H4 time-histories were measured using laser absorption of a CO2 gas laser near 10.53 microns. Experimental mixtures were designed to optimize sensitivity to the title reaction with only weak sensitivity to secondary reactions. Two mechanisms, FFCM1 and ARAMCO v2, are used for data analysis. The well-selected operating conditions and Monte-Carlo Sampling data analysis procedure resulted in mechanism independent reaction rate constant measurements with 2σ uncertainty of +/-35 %. The current data disagree with a broadly used theoretical calculation (Knyazev et al. (1996)), but they are in good consensus with one of the review studies (Baulch et al. (2005)), k=3.9×1022T3.62exp(-5670/T) cm3molecule-1s-1. To the best of our knowledge, this work provides the first high temperature study of C2H4+H⇒C2H3+H2 reaction rate constant with well-defined uncertainty.

    View details for PubMedID 30537818

  • Shock tube study of the rate constants for H +O-2 + M -> HO2 +M (M = Ar, H2O, CO2, N-2) at elevated pressures PROCEEDINGS OF THE COMBUSTION INSTITUTE Shao, J., Choudhary, R., Susa, A., Davidson, D. F., Hanson, R. K. 2019; 37 (1): 145–52
  • Demonstration of non-absorbing interference rejection using wavelength modulation spectroscopy in high-pressure shock tubes APPLIED PHYSICS B-LASERS AND OPTICS Wei, W., Peng, W., Wang, Y., Choudhary, R., Wang, S., Shao, J., Hanson, R. K. 2019; 125 (1)
  • Ignition delay times of methane and hydrogen highly diluted in carbon dioxide at high pressures up to 300 atm PROCEEDINGS OF THE COMBUSTION INSTITUTE Shao, J., Choudhary, R., Davidson, D. E., Hanson, R. K., Barak, S., Vasu, S. 2019; 37 (4): 4555–62
  • Ignition delay time measurements and modeling for gasoline at very high pressures PROCEEDINGS OF THE COMBUSTION INSTITUTE Davidson, D. F., Shao, J. K., Choudhary, R., Mehl, M., Obrecht, N., Hanson, R. K. 2019; 37 (4): 4885–92
  • A physics based approach to modeling real-fuel combustion chemistry - IV. HyChem modeling of combustion kinetics of a bio-derived jet fuel and its blends with a conventional Jet A COMBUSTION AND FLAME Wang, K., Xu, R., Parise, T., Shao, J., Movaghar, A., Lee, D., Park, J., Gao, Y., Lu, T., Egolfopoulos, F. N., Davidson, D. F., Hanson, R. K., Bowman, C. T., Wang, H. 2018; 198: 477–89
  • A Physics-based approach to modeling real-fuel combustion chemistry - III. Reaction kinetic model of JP10 COMBUSTION AND FLAME Tao, Y., Xu, R., Wang, K., Shao, J., Johnson, S. E., Movaghar, A., Han, X., Park, J., Lu, T., Brezinsky, K., Egolfopoulos, F. N., Davidson, D. F., Hanson, R. K., Bowman, C. T., Wang, H. 2018; 198: 466–76
  • A shock tube study of jet fuel pyrolysis and ignition at elevated pressures and temperatures FUEL Shao, J., Zhu, Y., Wang, S., Davidson, D. F., Hanson, R. K. 2018; 226: 338–44
  • A shock tube study of ignition delay times in diluted methane, ethylene, propene and their blends at elevated pressures FUEL Shao, J., Davidson, D. F., Hanson, R. K. 2018; 225: 370–80
  • A physics-based approach to modeling real-fuel combustion chemistry - II. Reaction kinetic models of jet and rocket fuels COMBUSTION AND FLAME Xu, R., Wang, K., Banerjee, S., Shao, J., Parise, T., Zhu, Y., Wang, S., Movaghar, A., Lee, D., Zhao, R., Han, X., Gao, Y., Lu, T., Brezinsky, K., Egolfopoulos, F. N., Davidson, D. F., Hanson, R. K., Bowman, C. T., Wang, H. 2018; 193: 520–37
  • Ignition delay time correlations for distillate fuels FUEL Davidson, D. F., Zhu, Y., Shao, J., Hanson, R. K. 2017; 187: 26-32