Academic Appointments


All Publications


  • Cerebellin-2 regulates a serotonergic dorsal raphe circuit that controls compulsive behaviors. Molecular psychiatry Seigneur, E., Wang, J., Dai, J., Polepalli, J., Sudhof, T. C. 2021

    Abstract

    Cerebellin-1 (Cbln1) and cerebellin-2 (Cbln2) are secreted glycoproteins that are expressed in distinct subsets of neurons throughout the brain. Cbln1 and Cbln2 simultaneously bind to presynaptic neurexins and postsynaptic GluD1 and GluD2, thereby forming trans-synaptic adhesion complexes. Genetic associations link cerebellins, neurexins and GluD's to neuropsychiatric disorders involving compulsive behaviors, such as Tourette syndrome, attention-deficit hyperactivity disorder (ADHD), and obsessive-compulsive disorder (OCD). Extensive evidence implicates dysfunction of serotonergic signaling in these neuropsychiatric disorders. Here, we report that constitutive Cbln2 KO mice, but not Cbln1 KO mice, display robust compulsive behaviors, including stereotypic pattern running, marble burying, explosive jumping, and excessive nest building, and exhibit decreased brain serotonin levels. Strikingly, treatment of Cbln2 KO mice with the serotonin precursor 5-hydroxytryptophan or the serotonin reuptake-inhibitor fluoxetine alleviated compulsive behaviors. Conditional deletion of Cbln2 both from dorsal raphe neurons and from presynaptic neurons synapsing onto dorsal raphe neurons reproduced the compulsive behaviors of Cbln2 KO mice. Finally, injection of recombinant Cbln2 protein into the dorsal raphe of Cbln2 KO mice largely reversed their compulsive behaviors. Taken together, our results show that Cbln2 controls compulsive behaviors by regulating serotonergic circuits in the dorsal raphe.

    View details for DOI 10.1038/s41380-021-01187-x

    View details for PubMedID 34158618

  • GluD1 is a signal transduction device disguised as an ionotropic receptor NATURE Dai, J., Patzke, C., Liakath-Ali, K., Seigneur, E., Sudhof, T. C. 2021

    Abstract

    Ionotropic glutamate delta receptors 1 (GluD1) and 2 (GluD2) exhibit the molecular architecture of postsynaptic ionotropic glutamate receptors, but assemble into trans-synaptic adhesion complexes by binding to secreted cerebellins that in turn interact with presynaptic neurexins1-4. It is unclear whether neurexin-cerebellin-GluD1/2 assemblies serve an adhesive synapse-formation function or mediate trans-synaptic signalling. Here we show in hippocampal synapses, that binding of presynaptic neurexin-cerebellin complexes to postsynaptic GluD1 controls glutamate receptor activity without affecting synapse numbers. Specifically, neurexin-1-cerebellin-2 and neurexin-3-cerebellin-2 complexes differentially regulate NMDA (N-methyl-D-aspartate) receptors and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors by activating distinct postsynaptic GluD1 effector signals. Of note, minimal GluD1 and GluD2 constructs containing only their N-terminal cerebellin-binding and C-terminal cytoplasmic domains, joined by an unrelated transmembrane region, fully control the levels of NMDA and AMPA receptors. The distinct signalling specificity of presynaptic neurexin-1 and neurexin-35,6 is encoded by their alternatively spliced splice site 4 sequences, whereas the regulatory functions of postsynaptic GluD1 are mediated by conserved cytoplasmic sequence motifs spanning 5-13 residues. Thus, GluDs are signalling molecules that regulate NMDA and AMPA receptors by an unexpected transduction mechanism that bypasses their ionotropic receptor architecture and directly converts extracellular neurexin-cerebellin signals into postsynaptic receptor responses.

    View details for DOI 10.1038/s41586-021-03661-6

    View details for Web of Science ID 000662164200002

    View details for PubMedID 34135511

  • Cannabinoid receptor activation acutely increases synaptic vesicle numbers by activating synapsins in human synapses. Molecular psychiatry Patzke, C., Dai, J., Brockmann, M. M., Sun, Z., Fenske, P., Rosenmund, C., Sudhof, T. C. 2021

    Abstract

    Cannabis and cannabinoid drugs are central agents that are used widely recreationally and are employed broadly for treating psychiatric conditions. Cannabinoids primarily act by stimulating presynaptic CB1 receptors (CB1Rs), the most abundant G-protein-coupled receptors in brain. CB1R activation decreases neurotransmitter release by inhibiting presynaptic Ca2+ channels and induces long-term plasticity by decreasing cellular cAMP levels. Here we identified an unanticipated additional mechanism of acute cannabinoid signaling in presynaptic terminals that regulates the size of synaptic vesicle pools available for neurotransmitter release. Specifically, we show that activation of CB1Rs in human and mouse neurons rapidly recruits vesicles to nerve terminals by suppressing the cAMP-dependent phosphorylation of synapsins. We confirmed this unanticipated mechanism using conditional deletion of synapsin-1, the predominant synapsin isoform in human neurons, demonstrating that synapsin-1 significantly contributes to the CB1R-dependent regulation of neurotransmission. Interestingly, acute activation of the Gi-DREADD hM4D mimics the effect of CB1R activation in a synapsin-1-dependent manner, suggesting that the control of synaptic vesicle numbers by synapsin-1 phosphorylation is a general presynaptic mechanism of neuromodulation. Thus, we uncovered a CB1R-dependent presynaptic mechanism that rapidly regulates the organization and neurotransmitter release properties of synapses.

    View details for DOI 10.1038/s41380-021-01095-0

    View details for PubMedID 33931733

  • Bi-allelic variants in TSPOAP1, encoding the active zone protein RIMBP1, cause autosomal recessive dystonia. The Journal of clinical investigation Mencacci, N. E., Brockmann, M. M., Dai, J. n., Pajusalu, S. n., Atasu, B. n., Campos, J. n., Pino, G. n., Gonzalez-Latapi, P. n., Patzke, C. n., Schwake, M. n., Tucci, A. n., Pittman, A. n., Simon-Sanchez, J. n., Carvill, G. L., Balint, B. n., Wiethoff, S. n., Warner, T. T., Papandreou, A. n., Soo, A. K., Rein, R. n., Kadastik-Eerme, L. n., Puusepp, S. n., Reinson, K. n., Tomberg, T. n., Hanagasi, H. n., Gasser, T. n., Bhatia, K. P., Kurian, M. A., Lohmann, E. n., Õunap, K. n., Rosenmund, C. n., Südhof, T. n., Wood, N. n., Krainc, D. n., Acuna, C. n. 2021

    Abstract

    Dystonia is a debilitating hyperkinetic movement disorder, which can be transmitted as a monogenic trait. Here, we describe homozygous frameshift, nonsense and missense variants in TSPOAP1, encoding the active zone RIM-binding protein 1 (RIMBP1), as a novel genetic cause of autosomal recessive dystonia in seven subjects from three unrelated families. Subjects carrying loss-of-function variants presented with juvenile-onset progressive generalized dystonia, associated with intellectual disability and cerebellar atrophy. Conversely, subjects carrying a pathogenic missense variant (p.Gly1808Ser) presented with isolated adult-onset focal dystonia. In mice, complete loss of RIMBP1, known to reduce neurotransmission, led to motor abnormalities reminiscent of dystonia, decreased Purkinje cell dendritic arborization, and reduced numbers of cerebellar synapses. In vitro analysis of the p.Gly1808Ser variant showed larger spike-evoked calcium transients and enhanced neurotransmission, suggesting that RIMBP1-linked dystonia can be caused by either reduced or enhanced rates of spike-evoked release in relevant neural networks. Our findings establish a direct link between dysfunction of the presynaptic active zone and dystonia and highlight the critical role played by well-balanced neurotransmission in motor control and disease pathogenesis.  .

    View details for DOI 10.1172/JCI140625

    View details for PubMedID 33539324

  • Alternative Splicing of Presynaptic Neurexins Differentially Controls Postsynaptic NMDA and AMPA Receptor Responses NEURON Dai, J., Aoto, J., Sudhof, T. C. 2019; 102 (5): 993-+
  • Neuromodulator Signaling Bidirectionally Controls Vesicle Numbers in Human Synapses. Cell Patzke, C. n., Brockmann, M. M., Dai, J. n., Gan, K. J., Grauel, M. K., Fenske, P. n., Liu, Y. n., Acuna, C. n., Rosenmund, C. n., Südhof, T. C. 2019; 179 (2): 498–513.e22

    Abstract

    Neuromodulators bind to pre- and postsynaptic G protein-coupled receptors (GPCRs), are able to quickly change intracellular cyclic AMP (cAMP) and Ca2+ levels, and are thought to play important roles in neuropsychiatric and neurodegenerative diseases. Here, we discovered in human neurons an unanticipated presynaptic mechanism that acutely changes synaptic ultrastructure and regulates synaptic communication. Activation of neuromodulator receptors bidirectionally controlled synaptic vesicle numbers within nerve terminals. This control correlated with changes in the levels of cAMP-dependent protein kinase A-mediated phosphorylation of synapsin-1. Using a conditional deletion approach, we reveal that the neuromodulator-induced control of synaptic vesicle numbers was largely dependent on synapsin-1. We propose a mechanism whereby non-phosphorylated synapsin-1 "latches" synaptic vesicles to presynaptic clusters at the active zone. cAMP-dependent phosphorylation of synapsin-1 then removes the vesicles. cAMP-independent dephosphorylation of synapsin-1 in turn recruits vesicles. Synapsin-1 thereby bidirectionally regulates synaptic vesicle numbers and modifies presynaptic neurotransmitter release as an effector of neuromodulator signaling in human neurons.

    View details for DOI 10.1016/j.cell.2019.09.011

    View details for PubMedID 31585084

  • Spontaneous Vesicle Release Is Not Tightly Coupled to Voltage-Gated Calcium Channel-Mediated Ca2+ Influx and Is Triggered by a Ca2+ Sensor Other Than Synaptotagmin-2 at the Juvenile Mice Calyx of Held Synapses JOURNAL OF NEUROSCIENCE Dai, J., Chen, P., Tian, H., Sun, J. 2015; 35 (26): 9632-9637

    Abstract

    It is well known that voltage-gated calcium channels (VGCCs)-mediated Ca(2+) influx triggers evoked synaptic vesicle release. However, the mechanisms of Ca(2+) regulation of spontaneous miniature vesicle release (mini) remain poorly understood. Here we show that blocking VGCCs at the juvenile mice (C57BL/6) calyx of Held synapse failed to cause an immediate change in minis. Instead, it resulted in a significant reduction (∼40%) of mini frequency several minutes after the blockage. By recording VGCC activity and single vesicle fusion events directly at the presynaptic terminal, we found that minis did not couple to VGCC-mediated Ca(2+) entry, arguing for a lack of direct correlation between mini and transient Ca(2+) influx. Moreover, mini frequencies displayed a lower apparent Ca(2+) cooperativity than those of evoked release. In agreement with this observation, abrogation of the Ca(2+) sensor synaptotagmin-2 had no effect on apparent Ca(2+) cooperativity of minis. Together, our study provides the first direct evidence that spontaneous minis are not mediated by transient Ca(2+) signals through VGCCs and are triggered by a Ca(2+)-sensing mechanism that is different from the evoked release at these microdomain VGCC-vesicle coupled synapses.

    View details for DOI 10.1523/JNEUROSCI.0457-15.2015

    View details for Web of Science ID 000358252600011

    View details for PubMedID 26134646

    View details for PubMedCentralID PMC6605140