All Publications


  • Structure of the complex of C1q-like 3 protein with adhesion-GPCR BAI3. Communications biology Miao, Y., Wang, H., Jude, K. M., Wang, J., Wang, J., Wernig, M., Südhof, T. C. 2025; 8 (1): 693

    Abstract

    The adhesion-GPCR Brain-specific Angiogenesis Inhibitor-3 (BAI3) plays a crucial role in organizing synapses in the brain. However, how BAI3 engages one of its ligands, the C1q-like proteins (C1qls), remains largely unexplored. Here, we present the single-particle cryo-electron microscopy (cryo-EM) structure of the C1ql3-BAI3 complex at 2.8 Å resolution. The structure reveals a hexameric configuration, where C1ql3 forms a central homotrimer that effectively captures three BAI3 molecules. These BAI3 molecules fit snugly into the grooves between the trimeric C1q domains of the C1qls, employing calcium ion (Ca2+)-mediated interactions that differ from previously characterized structures of C1q-like domain-mediated complexes. Furthermore, we conducted mutant analysis and cell surface staining, which confirmed the essential contact residues involved in this interaction. This unique binding mechanism not only enhances our understanding of the C1ql-BAI3-mediated synaptic organization but also sheds light on the functional dynamics of BAI3 in the brain.

    View details for DOI 10.1038/s42003-025-08112-w

    View details for PubMedID 40316654

    View details for PubMedCentralID PMC12048575

  • Distinct mechanisms control the specific synaptic functions of Neuroligin 1 and Neuroligin 2. EMBO reports Wang, J., Sudhof, T., Wernig, M. 2025

    Abstract

    Neuroligins are postsynaptic cell-adhesion molecules that regulate synaptic function with a remarkable isoform specificity. Although Nlgn1 and Nlgn2 are highly homologous and biochemically interact with the same extra- and intracellular proteins, Nlgn1 selectively functions in excitatory synapses whereas Nlgn2 functions in inhibitory synapses. How this excitatory/inhibitory (E/I) specificity arises is unknown. Using a comprehensive structure-function analysis, we here expressed wild-type and mutant neuroligins in functional rescue experiments in cultured hippocampal neurons lacking all endogenous neuroligins. Electrophysiology confirmed that Nlgn1 and Nlgn2 selectively restored excitatory and inhibitory synaptic transmission, respectively, in neuroligin-deficient neurons, aligned with their synaptic localizations. Chimeric Nlgn1-Nlgn2 constructs reveal that the extracellular neuroligin domains confer synapse specificity, whereas their intracellular sequences are exchangeable. However, the cytoplasmic sequences of Nlgn2, including its Gephyrin-binding motif that is identically present in the Nlgn1, is essential for its synaptic function whereas they are dispensable for Nlgn1. These results demonstrate that although the excitatory vs. inhibitory synapse specificity of Nlgn1 and Nlgn2 are both determined by their extracellular sequences, these neuroligins enable normal synaptic connections via distinct intracellular mechanisms.

    View details for DOI 10.1038/s44319-024-00286-4

    View details for PubMedID 39747663

    View details for PubMedCentralID 4482778

  • Efficient generation of functional neurons from mouse embryonic stem cells via neurogenin-2 expression. Nature protocols Liu, Y., Wang, J., Südhof, T. C., Wernig, M. 2023

    Abstract

    The production of induced neuronal (iN) cells from human embryonic stem cells (ESCs) and induced pluripotent stem cells by the forced expression of proneural transcription factors is rapid, efficient and reproducible. The ability to generate large numbers of human neurons in such a robust manner enables large-scale studies of human neural differentiation and neuropsychiatric diseases. Surprisingly, similar transcription factor-based approaches for converting mouse ESCs into iN cells have been challenging, primarily because of low cell survival. Here, we provide a detailed approach for the efficient and reproducible generation of functional iN cells from mouse ESC cultures by the genetically induced expression of neurogenin-2. The resulting iN cells display mature pre- and postsynaptic specializations and form synaptic networks. Our method provides the basis for studying neuronal development and enables the direct comparison of cellular phenotypes in mouse and human neurons generated in an equivalent way. The procedure requires 14 d and can be carried out by users with expertise in stem cell culture.

    View details for DOI 10.1038/s41596-023-00863-2

    View details for PubMedID 37596357

    View details for PubMedCentralID 3032267

  • Astrocytic Neuroligins Are Not Required for Synapse Formation or a Normal Astrocyte Cytoarchitecture. bioRxiv : the preprint server for biology Golf, S. R., Trotter, J. H., Nakahara, G., Südhof, T. C. 2023

    Abstract

    Astrocytes exert multifarious roles in the formation, regulation, and function of synapses in the brain, but the mechanisms involved remain unclear. Interestingly, astrocytes abundantly express neuroligins, postsynaptic adhesion molecules that bind to presynaptic neurexins. A pioneering recent study reported that loss-of-function of neuroligins in astrocytes impairs excitatory synapse formation and astrocyte morphogenesis. This study suggested a crucial synaptic function for astrocytic neuroligins but was puzzling given that constitutive neuroligin deletions do not decrease excitatory synapse numbers. Thus, we here examined the function of astrocytic neuroligins using a rigorous conditional genetic approach with deletion of all major neuroligins (Nlgn1-3) in astrocytes. Our results show that early postnatal deletion of neuroligins from astrocytes has no effect on cortical or hippocampal synapses and does not alter the cytoarchitecture of astrocytes. Thus, astrocytic neuroligins are unlikely to shape synapse formation or astrocyte development but may perform other important functions in astrocytes.

    View details for DOI 10.1101/2023.04.10.536254

    View details for PubMedID 37090508

    View details for PubMedCentralID PMC10120619

  • RTN4/NoGo-receptor binding to BAI adhesion-GPCRs regulates neuronal development. Cell Wang, J., Miao, Y., Wicklein, R., Sun, Z., Wang, J., Jude, K. M., Fernandes, R. A., Merrill, S. A., Wernig, M., Garcia, K. C., Sudhof, T. C. 2021

    Abstract

    RTN4-binding proteins were widely studied as "NoGo" receptors, but their physiological interactors and roles remain elusive. Similarly, BAI adhesion-GPCRs were associated with numerous activities, but their ligands and functions remain unclear. Using unbiased approaches, we observed an unexpected convergence: RTN4 receptors are high-affinity ligands for BAI adhesion-GPCRs. A single thrombospondin type 1-repeat (TSR) domain of BAIs binds to the leucine-rich repeat domain of all three RTN4-receptor isoforms with nanomolar affinity. In the 1.65A crystal structure of the BAI1/RTN4-receptor complex, C-mannosylation of tryptophan and O-fucosylation of threonine in the BAI TSR-domains creates a RTN4-receptor/BAI interface shaped by unusual glycoconjugates that enables high-affinity interactions. In human neurons, RTN4 receptors regulate dendritic arborization, axonal elongation, and synapse formation by differential binding to glial versus neuronal BAIs, thereby controlling neural network activity. Thus, BAI binding to RTN4/NoGo receptors represents a receptor-ligand axis that, enabled by rare post-translational modifications, controls development of synaptic circuits.

    View details for DOI 10.1016/j.cell.2021.10.016

    View details for PubMedID 34758294

  • Cross-platform validation of neurotransmitter release impairments in schizophrenia patient-derived NRXN1-mutant neurons. Proceedings of the National Academy of Sciences of the United States of America Pak, C., Danko, T., Mirabella, V. R., Wang, J., Liu, Y., Vangipuram, M., Grieder, S., Zhang, X., Ward, T., Huang, Y. A., Jin, K., Dexheimer, P., Bardes, E., Mitelpunkt, A., Ma, J., McLachlan, M., Moore, J. C., Qu, P., Purmann, C., Dage, J. L., Swanson, B. J., Urban, A. E., Aronow, B. J., Pang, Z. P., Levinson, D. F., Wernig, M., Sudhof, T. C. 2021; 118 (22)

    Abstract

    Heterozygous NRXN1 deletions constitute the most prevalent currently known single-gene mutation associated with schizophrenia, and additionally predispose to multiple other neurodevelopmental disorders. Engineered heterozygous NRXN1 deletions impaired neurotransmitter release in human neurons, suggesting a synaptic pathophysiological mechanism. Utilizing this observation for drug discovery, however, requires confidence in its robustness and validity. Here, we describe a multicenter effort to test the generality of this pivotal observation, using independent analyses at two laboratories of patient-derived and newly engineered human neurons with heterozygous NRXN1 deletions. Using neurons transdifferentiated from induced pluripotent stem cells that were derived from schizophrenia patients carrying heterozygous NRXN1 deletions, we observed the same synaptic impairment as in engineered NRXN1-deficient neurons. This impairment manifested as a large decrease in spontaneous synaptic events, in evoked synaptic responses, and in synaptic paired-pulse depression. Nrxn1-deficient mouse neurons generated from embryonic stem cells by the same method as human neurons did not exhibit impaired neurotransmitter release, suggesting a human-specific phenotype. Human NRXN1 deletions produced a reproducible increase in the levels of CASK, an intracellular NRXN1-binding protein, and were associated with characteristic gene-expression changes. Thus, heterozygous NRXN1 deletions robustly impair synaptic function in human neurons regardless of genetic background, enabling future drug discovery efforts.

    View details for DOI 10.1073/pnas.2025598118

    View details for PubMedID 34035170