All Publications

  • Probing Lattice Dynamics in Two-Dimensional InorganicPseudohalide Perovskites with Ultrafast Infrared Spectroscopy br JOURNAL OF PHYSICAL CHEMISTRY C Xing, X., Li, J., Breen, J. P., Nishida, J., Karunadasa, H., Fayer, M. D. 2022; 126 (24): 10145-10158
  • Structural Dynamics in Ionic Liquid Thin Films: The Effect of Cation Chain Length JOURNAL OF PHYSICAL CHEMISTRY C Wu, B., Breen, J. P., Fayer, M. D. 2020; 124 (7): 4179–89
  • Controlling the Dynamics of Ionic Liquid Thin Films via Multilayer Surface Functionalization. Journal of the American Chemical Society Wu, B. n., Breen, J. P., Xing, X. n., Fayer, M. D. 2020


    The structural dynamics of planar thin films of an ionic liquid (IL) 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimNTf2) as a function of surface charge density and thickness were investigated using two-dimensional infrared (2D IR) spectroscopy. The films were made by spin coating a methanol solution of the IL on silica substrates that were functionalized with alkyl chains containing head groups that mimic the IL cation. The thicknesses of the ionic liquid films ranged from ∼50 to ∼250 nm. The dynamics of the films are slower than those in the bulk IL, becoming increasingly slow as the films become thinner. Control of the dynamics of the IL films can be achieved by adjusting the charge density on substrates through multilayer network surface functionalization. The charge density of the surface (number of positively charged groups in the network bound to the surface per unit area) is controlled by the duration of the functionalization reaction. As the charge density is increased, the IL dynamics become slower. For comparison, the surface was functionalized with three different neutral groups. Dynamics of the IL films on the functionalized neutral surfaces are faster than on any of the ionic surfaces but still slower than the bulk IL, even for the thickest films. These results can have implications in applications that employ ILs that have electrodes, such as batteries, as the electrode surface charge density will influence properties like diffusion close to the surface.

    View details for DOI 10.1021/jacs.0c03044

    View details for PubMedID 32349470

  • Extraordinary Slowing of Structural Dynamics in Thin Films of a Room Temperature Ionic Liquid. ACS central science Nishida, J., Breen, J. P., Wu, B., Fayer, M. D. 2018; 4 (8): 1065–73


    The role that interfaces play in the dynamics of liquids is a fundamental scientific problem with vast importance in technological applications. From material science to biology, e.g., batteries to cell membranes, liquid properties at interfaces are frequently determinant in the nature of chemical processes. For most liquids, like water, the influence of an interface falls off on a 1 nm distance scale. Room temperature ionic liquids (RTILs) are a vast class of unusual liquids composed of complex cations and anions that are liquid salts at room temperature. They are unusual liquids with properties that can be finely tuned by selecting the structure of the cation and anion. RTILs are being used or developed in applications such as batteries, CO2 capture, and liquids for biological processes. Here, it is demonstrated quantitatively that the influence of an interface on RTIL properties is profoundly different from that observed in other classes of liquids. The dynamics of planar thin films of the room temperature ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimNTf2), were investigated using two-dimensional infrared spectroscopy (2D IR) with the CN stretch of SeCN- as the vibrational probe. The structural dynamics (spectral diffusion) of the thin films with controlled nanometer thicknesses were measured and compared to the dynamics of the bulk liquid. The samples were prepared by spin coating the RTIL, together with the vibrational probe, onto a surface functionalized with an ionic monolayer that mimics the structure of the BmimNTf2. Near-Brewster's angle reflection pump-probe geometry 2D IR facilitated the detection of the exceedingly small signals from the films, some of which were only 14 nm thick. Even in quarter micron (250 nm) thick films, the observed dynamics were much slower than those of the bulk liquid. Using a new theoretical description, the correlation length (exponential falloff of the influence of the interfaces) was found to be 28 ± 5 nm. This very long correlation length, 30 times greater than that of water, has major implications for the use of RTILs in devices and other applications.

    View details for PubMedID 30159404

  • Dynamically Disordered Lattice in a Layered Pb-I-SCN Perovskite Thin Film Probed by Two-Dimensional Infrared Spectroscopy. Journal of the American Chemical Society Nishida, J., Breen, J. P., Lindquist, K. P., Umeyama, D., Karunadasa, H. I., Fayer, M. D. 2018


    The dynamically flexible lattices in lead halide perovskites may play important roles in extending carrier recombination lifetime in 3D perovskite solar-cell absorbers and in exciton self-trapping in 2D perovskite white-light phosphors. Two-dimensional infrared (2D IR) spectroscopy was applied to study a recently reported Pb-I-SCN layered perovskite. The Pb-I-SCN perovskite was spin-coated on a SiO2 surface as a thin film, with a thickness of 100 nm, where the S12CN- anions were isotopically diluted with the ratio of S12CN:S13CN = 5:95 to avoid vibrational coupling and excitation transfer between adjacent SCN- anions. The 12CN stretch mode of the minor S12CN- component was the principal vibrational probe that reported on the structural evolution through 2D IR spectroscopy. Spectral diffusion was observed with a time constant of 4.1 ± 0.3 ps. Spectral diffusion arises from small structural changes that result in sampling of frequencies within the distribution of frequencies comprising the inhomogeneously broadened infrared absorption band. These transitions among discrete local structures are distinct from oscillatory phonon motions of the lattice. To accurately evaluate the structural dynamics through measurement of spectral diffusion, the vibrational coupling between adjacent SCN- anions had to be carefully treated. Although the inorganic layers of typical 2D perovskites are structurally isolated from each other, the 2D IR data demonstrated that the layers of the Pb-I-SCN perovskite are vibrationally coupled. When both S12CN- and S13CN- were pumped simultaneously, cross-peaks between S12CN and S13CN vibrations and an oscillating 2D band shape of the S12CN- vibration were observed. Both observables demonstrate vibrational coupling between the closest SCN- anions, which reside in different inorganic layers. The thin films and the isotopic dilution produced exceedingly small vibrational echo signal fields; measurements were made possible using the near-Brewster's angle reflection pump-probe geometry.

    View details for PubMedID 30024160

  • Ultrafast to Ultraslow Dynamics of a Langmuir Monolayer at the Air/Water Interface Observed with Reflection Enhanced 2D IR Spectroscopy JOURNAL OF THE AMERICAN CHEMICAL SOCIETY Yan, C., Thomaz, J. E., Wang, Y., Nishida, J., Yuan, R., Breen, J. P., Fayer, M. D. 2017; 139 (46): 16518–27


    Monolayers play important roles in naturally occurring phenomena and technological processes. Monolayers at the air/water interface have received considerable attention, yet it has proven difficult to measure monolayer and interfacial molecular dynamics. Here we employ a new technique, reflection enhanced two-dimensional infrared (2D IR) spectroscopy, on a carbonyl stretching mode of tricarbonylchloro-9-octadecylamino-4,5-diazafluorenerhenium(I) (TReF18) monolayers at two surface densities. Comparison to experiments on a water-soluble version of the metal carbonyl headgroup shows that water hydrogen bond rearrangement dynamics slow from 1.5 ps in bulk water to 3.1 ps for interfacial water. Longer time scale fluctuations were also observed and attributed to fluctuations of the number of hydrogen bonds formed between water and the three carbonyls of TReF18. At the higher surface density, two types of TReF18 minor structures are observed in addition to the main structure. The reflection method can take usable 2D IR spectra on the monolayer within 8 s, enabling us to track the fluctuating minor structures' appearance and disappearance on a tens of seconds time scale. 2D IR chemical exchange spectroscopy further shows these structures interconvert in 30 ps. Finally, 2D spectral line shape evolution reveals that it takes the monolayers hours to reach macroscopic structural equilibrium.

    View details for PubMedID 29072913