Academic Appointments


  • Adjunct Professor, Electrical Engineering

All Publications


  • ALD HfO2 Films for Defining Microelectrodes for Electrochemical Sensing and Other Applications ACS APPLIED MATERIALS & INTERFACES Chia, C., Shulaker, M. M., Provine, J., Jeffrey, S. S., Howe, R. T. 2019; 11 (29): 26082–92

    Abstract

    Microelectrodes are used in a wide range of applications from analytical electrochemistry and biomolecular sensing to in vivo implants. While a variety of insulating materials have been used to define the microelectrode active area, most are not suitable for nanoscale electrodes (<1 μm2) due to the limited robustness of these films when the film thickness is on the order of the nanoelectrode dimension. In this study, we investigate atomic layer deposited hafnium dioxide (ALD HfO2) as an insulating film to coat planar platinum microelectrodes, with the active areas being defined where the HfO2 is etched. Thermally grown films with thicknesses between 10 and 60 nm were deposited by 100 to 550 ALD cycles and were initially characterized by measuring their standard electrical properties and imaging incipient texture development. Electrochemical measurements on the structures were made, including linear sweep voltammetry and electrochemical impedance spectroscopy, which identified the presence of pinholes in films deposited over the range of 100 to 350 cycles, resulting in leakage. These measurements also suggest a lower limit to the size of microelectrodes below which the electrochemical current detected is no longer dominated by that through the exposed active area. A bilayer insulator comprising ALD HfO2 coated with parylene-C was investigated to minimize the pinhole leakage. Steady-state currents were measured for different electrode areas, qualitatively agreeing with the theory for areas down to ∼1 μm2. For sub-square micrometer electrode areas, bilayer-insulated devices with parylene-C apertures that exposed the smallest microelectrode area showed measured currents that were consistent with extrapolations, indicating that it reduces leakage through HfO2.

    View details for DOI 10.1021/acsami.9b06891

    View details for Web of Science ID 000477787200048

    View details for PubMedID 31305057

  • Electrical Properties of Ultrathin Platinum Films by Plasma-Enhanced Atomic Layer Deposition ACS APPLIED MATERIALS & INTERFACES Kim, H. K., Kaplan, K. E., Schindler, P., Xu, S., Winterkorn, M. M., Heinz, D. B., English, T. S., Provine, J., Prinz, F. B., Kenny, T. W. 2019; 11 (9): 9594–99

    Abstract

    The ability to deposit thin and conformal films has become of great importance because of downscaling of devices. However, because of nucleation difficulty, depositing an electrically stable and thin conformal platinum film on an oxide nucleation layer has proven challenging. By using plasma-enhanced atomic layer deposition (PEALD) and TiO2 as a nucleation layer, we achieved electrically continuous PEALD platinum films down to a thickness of 3.7 nm. Results show that for films as thin as 5.7 nm, the Mayadas-Shatzkes (MS) model for electrical conductivity and the Tellier-Tosser model for temperature coefficient of resistance hold. Although the experimental values start to deviate from the MS model below 5.7 nm because of incomplete Pt coverage, the films still show root mean square electrical stability better than 50 ppm over time, indicating that these films are not only electrically continuous but also sufficiently reliable for use in many practical applications.

    View details for DOI 10.1021/acsami.8b21054

    View details for Web of Science ID 000460996900096

    View details for PubMedID 30707831

    View details for PubMedCentralID PMC6407042

  • Extending the limits of Pt/C catalysts with passivation-gas-incorporated atomic layer deposition NATURE CATALYSIS Xu, S., Kim, Y., Park, J., Higgins, D., Shen, S., Schindler, P., Thian, D., Provine, J., Torgersen, J., Graf, T., Schladt, T. D., Orazov, M., Liu, B., Jaramillo, T. F., Prinz, F. B. 2018; 1 (8): 624–30
  • HIGH STABILITY THERMAL ACCELEROMETER BASED ON ULTRATHIN PLATINUM ALD NANOSTRUCTURES Everhart, C. M., Kaplan, K. E., Winterkorn, M. M., Kwon, H., Provine, J., Asheghi, M., Goodson, K. E., Prinz, F. B., Kenny, T. W., IEEE IEEE. 2018: 976–79
  • Superconducting niobium titanium nitride thin films deposited by plasma-enhanced atomic layer deposition SUPERCONDUCTOR SCIENCE & TECHNOLOGY Yemane, Y. T., Sowa, M. J., Zhang, J., Ju, L., Deguns, E. W., Strandwitz, N. C., Prinz, F. B., Provine, J. 2017; 30 (9)
  • Measurement of Young's modulus and residual stress of atomic layer deposited Al2O3 and Pt thin films JOURNAL OF MICROMECHANICS AND MICROENGINEERING Purkl, F., Daus, A., English, T. S., Provine, J., Feyh, A., Urban, G., Kenny, T. W. 2017; 27 (8)
  • Back-end-of-line compatible Poly-SiGe lateral nanoelectromechanical relays with multi-level interconnect Harrison, K. L., Clary, W. A., Provine, J., Howe, R. T. SPRINGER. 2017: 2125–30
  • Process Control of Atomic Layer Deposition Molybdenum Oxide Nucleation and Sulfidation to Large-Area MoS2 Monolayers CHEMISTRY OF MATERIALS Keller, B. D., Bertuch, A., Provine, J., Sundaram, G., Ferralis, N., Grossman, J. C. 2017; 29 (5): 2024–32
  • Plasma-enhanced atomic layer deposition of superconducting niobium nitride JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A Sowa, M. J., Yemane, Y., Zhang, J., Palmstrom, J. C., Ju, L., Strandwitz, N. C., Prinz, F. B., Provine, J. 2017; 35 (1)

    View details for DOI 10.1116/1.4972858

    View details for Web of Science ID 000392120900048

  • Plasma-enhanced atomic layer deposition of barium titanate with aluminum incorporation ACTA MATERIALIA Kim, Y., Schindler, P., Dadlani, A. L., Acharya, S., Provine, J., An, J., Prinz, F. B. 2016; 117: 153-159
  • Plasma-enhanced atomic layer deposition of tungsten nitride JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A Sowa, M. J., Yemane, Y., Prinz, F. B., Provine, J. 2016; 34 (5)

    View details for DOI 10.1116/1.4961567

    View details for Web of Science ID 000384263700032

  • Plasma-Enhanced Atomic Layer Deposition of SiN-AIN Composites for Ultra Low Wet Etch Rates in Hydrofluoric Acid ACS APPLIED MATERIALS & INTERFACES Kim, Y., Provine, J., Waich, S. P., Park, J., Phuthong, W., Dadlani, A. L., Kim, H., Schindier, P., Kim, K., Prinz, F. B. 2016; 8 (27): 17599-17605

    Abstract

    The continued scaling in transistors and memory elements has necessitated the development of atomic layer deposited (ALD) of hydrofluoric acid (HF) etch resistant and electrically insulating films for sidewall spacer processing. Silicon nitride (SiN) has been the prototypical material for this need and extensive work has been conducted into realizing sufficiently lower wet etch rates (WERs) as well as leakage currents to meet industry needs. In this work, we report on the development of plasma-enhanced atomic layer deposition (PEALD) composites of SiN and AlN to minimize WER and leakage current density. In particular, the role of aluminum and the optimum amount of Al contained in the composite structures have been explored. Films with near zero WER in dilute HF and leakage currents density similar to pure PEALD SiN films could be simultaneously realized through composites which incorporate ≥13 at. % Al, with a maximum thermal budget of 350 °C.

    View details for DOI 10.1021/acsami.6b03194

    View details for Web of Science ID 000379794100069

    View details for PubMedID 27295338

  • Parallel preparation of plan-view transmission electron microscopy specimens by vapor-phase etching with integrated etch stops ULTRAMICROSCOPY English, T. S., Provine, J., Marshall, A. F., Koh, A. L., Kenny, T. W. 2016; 166: 39-47

    Abstract

    Specimen preparation remains a practical challenge in transmission electron microscopy and frequently limits the quality of structural and chemical characterization data obtained. Prevailing methods for thinning of specimens to electron transparency are serial in nature, time consuming, and prone to producing artifacts and specimen failure. This work presents an alternative method for the preparation of plan-view specimens using isotropic vapor-phase etching with integrated etch stops. An ultrathin amorphous etch-stop layer simultaneously serves as an electron transparent support membrane whose thickness is defined by a controlled growth process such as atomic layer deposition with sub-nanometer precision. This approach eliminates the need for mechanical polishing or ion milling to achieve electron transparency, and reduces the occurrence of preparation induced artifacts. Furthermore, multiple specimens from a plurality of samples can be thinned in parallel due to high selectivity of the vapor-phase etching process. These features enable dramatic reductions in preparation time and cost without sacrificing specimen quality and provide advantages over wet etching techniques. Finally, we demonstrate a platform for high-throughput transmission electron microscopy of plan-view specimens by combining the parallel preparation capabilities of vapor-phase etching with wafer-scale micro- and nanofabrication.

    View details for DOI 10.1016/j.ultramic.2016.04.003

    View details for Web of Science ID 000376734400005

    View details for PubMedID 27160487

  • Correlation of film density and wet etch rate in hydrofluoric acid of plasma enhanced atomic layer deposited silicon nitride AIP ADVANCES Provine, J., Schindler, P., Kim, Y., Walch, S. P., Kim, H. J., Kim, K., Prinz, F. B. 2016; 6 (6)

    View details for DOI 10.1063/1.4954238

    View details for Web of Science ID 000379041400012

  • Atomically Flat Silicon Oxide Monolayer Generated by Remote Plasma JOURNAL OF PHYSICAL CHEMISTRY C Thian, D., Yemane, Y. T., Logar, M., Xu, S., Schindler, P., Winterkorn, M. M., Provine, J., Prinz, F. B. 2016; 120 (15): 8148-8156
  • Atomic layer deposition by reaction of molecular oxygen with tetrakisdimethylamido-metal precursors JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A Provine, J., Schindler, P., Torgersen, J., Kim, H. J., Karnthaler, H., Prinz, F. B. 2016; 34 (1)

    View details for DOI 10.1116/1.4937991

    View details for Web of Science ID 000375115800039

  • Engineering Ultra-Low Work Function of Graphene NANO LETTERS Yuan, H., Chang, S., Bargatin, I., Wang, N. C., Riley, D. C., Wang, H., Schwede, J. W., Provine, J., Pop, E., Shen, Z., Pianetta, P. A., Melosh, N. A., Howe, R. T. 2015; 15 (10): 6475-6480

    Abstract

    Low work function materials are critical for energy conversion and electron emission applications. Here, we demonstrate for the first time that an ultralow work function graphene is achieved by combining electrostatic gating with a Cs/O surface coating. A simple device is built from large-area monolayer graphene grown by chemical vapor deposition, transferred onto 20 nm HfO2 on Si, enabling high electric fields capacitive charge accumulation in the graphene. We first observed over 0.7 eV work function change due to electrostatic gating as measured by scanning Kelvin probe force microscopy and confirmed by conductivity measurements. The deposition of Cs/O further reduced the work function, as measured by photoemission in an ultrahigh vacuum environment, which reaches nearly 1 eV, the lowest reported to date for a conductive, nondiamond material.

    View details for DOI 10.1021/acs.nanolett.5b01916

    View details for PubMedID 26401728

  • Enhanced Step Coverage of TiO2 Deposited on High Aspect Ratio Surfaces by Plasma-Enhanced Atomic Layer Deposition LANGMUIR Schindler, P., Logar, M., Provine, J., Prinz, F. B. 2015; 31 (18): 5057-5062

    Abstract

    Plasma-enhanced atomic layer deposition (PEALD) provides multiple benefits compared to thermal ALD including lower possible process temperature and a wider palette of possible materials. However, coverage of high aspect ratio (AR) structures is limited due to the recombination rates of the radical plasma species. We study the limits of conformality in 1:30 AR structures for TiO2 based on tetrakis(dimethylamido)titanium (TDMA-Ti) and O2 plasma through variation in plasma exposure and substrate temperature. Extending plasma exposure duration and decreasing substrate temperature within the ALD window both serve to improve the conformality of the deposited film, with coverage >95% achievable. Additionally, the changes in morphology of the TiO2 were examined with crystallites of anatase and brookite found.

    View details for DOI 10.1021/acs.langmuir.5b00216

    View details for Web of Science ID 000354578700006

    View details for PubMedID 25896559

  • High-density waveguide superlattices with low crosstalk NATURE COMMUNICATIONS Song, W., Gatdula, R., Abbaslou, S., Lu, M., Stein, A., Lai, W. Y., Provine, J., Pease, R. F., Christodoulides, D. N., Jiang, W. 2015; 6

    Abstract

    Silicon photonics holds great promise for low-cost large-scale photonic integration. In its future development, integration density will play an ever-increasing role in a way similar to that witnessed in integrated circuits. Waveguides are perhaps the most ubiquitous component in silicon photonics. As such, the density of waveguide elements is expected to have a crucial influence on the integration density of a silicon photonic chip. A solution to high-density waveguide integration with minimal impact on other performance metrics such as crosstalk remains a vital issue in many applications. Here, we propose a waveguide superlattice and demonstrate advanced superlattice design concepts such as interlacing-recombination that enable high-density waveguide integration at a half-wavelength pitch with low crosstalk. Such waveguide superlattices can potentially lead to significant reduction in on-chip estate for waveguide elements and salient enhancement of performance for important applications, opening up possibilities for half-wavelength-pitch optical-phased arrays and ultra-dense space-division multiplexing.

    View details for DOI 10.1038/ncomms8027

    View details for Web of Science ID 000355530100001

    View details for PubMedID 25960367

  • Integrated atomistic chemical imaging and reactive force field molecular dynamic simulations on silicon oxidation APPLIED PHYSICS LETTERS Dumpala, S., Broderick, S. R., Khalilov, U., Neyts, E. C., van Duin, A. C., Provine, J., Howe, R. T., Rajan, K. 2015; 106 (1)

    View details for DOI 10.1063/1.4905442

    View details for Web of Science ID 000347976900008

  • ETCH "SANDBOX": CONTROLLED RELEASE DIMENSIONS THROUGH ATOMIC LAYER DEPOSITION ETCH STOP WITH TRENCH REFILL AND POLISH Winterkorn, M. M., Dadlani, A. L., Kim, Y., Provine, J., Prinz, F. B., IEEE IEEE. 2015: 2272–75
  • The Role of Ti Capping Layer in HfOx-Based RRAM Devices IEEE ELECTRON DEVICE LETTERS Fang, Z., Wang, X. P., Sohn, J., Weng, B. B., Zhang, Z. P., Chen, Z. X., Tang, Y. Z., Lo, G., Provine, J., Wong, S. S., Wong, H. P., Kwong, D. 2014; 35 (9): 912-914
  • Improved Performance of Bottom-Contact Organic Thin-Film Transistor Using Al Doped HfO2 Gate Dielectric IEEE TRANSACTIONS ON ELECTRON DEVICES Tang, W. M., Aboudi, U., Provine, J., Howe, R. T., Wong, H. P. 2014; 61 (7): 2398-2403
  • Double-Layer Silicon Photonic Crystal Fiber-Tip Temperature Sensors IEEE PHOTONICS TECHNOLOGY LETTERS Park, B., Jung, I. W., Provine, J., Gellineau, A., Landry, J., Howe, R. T., Solgaard, O. 2014; 26 (9): 900-903
  • Depletion of cells and abundant proteins from biological samples by enhanced dielectrophoresis 17th International Conference on Solid-State Sensors, Actuators and Microsystems Javanmard, M., Emaminejad, S., Gupta, C., Provine, J., Davis, R. W., Howe, R. T. ELSEVIER SCIENCE SA. 2014: 918–24

    Abstract

    Platforms that are sensitive and specific enough to assay low-abundance protein biomarkers, in a high throughput multiplex format, within a complex biological fluid specimen, are necessary to enable protein biomarker based diagnostics for diseases such as cancer. The signal from an assay for a low-abundance protein biomarker in a biological fluid sample like blood is typically buried in a background that arises from the presence of blood cells and from high-abundance proteins that make up 90% of the assayed protein mass. We present an automated on-chip platform for the depletion of cells and highly abundant serum proteins in blood. Our platform consists of two components, the first of which is a microfluidic mixer that mixes beads containing antibodies against the highly abundant proteins in the whole blood. This complex mixture (consisting of beads, cells, and serum proteins) is then injected into the second component of our microfluidic platform, which comprises a filter trench to capture all the cells and the beads. The size-based trapping of the cells and beads into the filter trench is significantly enhanced by leveraging additional negative dielectrophoretic forces to push the micron sized particles (cells and beads which have captured the highly abundant proteins) down into the trench, allowing the serum proteins of lower abundance to flow through. In general, dielectrophoresis using bare electrodes is incapable of producing forces beyond the low piconewton range that tend to be insufficient for separation applications. However, by using electrodes passivated with atomic layer deposition, we demonstrate the application of enhanced negative DEP electrodes together with size-based flltration induced by the filter trench, to deplete 100% of the micron sized particles in the mixture.

    View details for DOI 10.1016/j.snb.2013.11.100

    View details for Web of Science ID 000330113600128

    View details for PubMedCentralID PMC4765371

  • Photonic crystal cavities in cubic (3C) polytype silicon carbide films OPTICS EXPRESS Radulaski, M., Babinec, T. M., Buckley, S., Rundquist, A., Provine, J., Alassaad, K., Ferro, G., Vuckovic, J. 2013; 21 (26): 32623-32629

    Abstract

    We present the design, fabrication, and characterization of high quality factor (Q ~103) and small mode volume (V ~0.75 (λ/n)3) planar photonic crystal cavities from cubic (3C) thin films (thickness ~200 nm) of silicon carbide (SiC) grown epitaxially on a silicon substrate. We demonstrate cavity resonances across the telecommunications band, with wavelengths from 1.25 - 1.6 μm. Finally, we discuss possible applications in nonlinear optics, optical interconnects, and quantum information science.

    View details for DOI 10.1364/OE.21.032623

    View details for Web of Science ID 000329205200088

    View details for PubMedID 24514856

  • Single-cell photonic nanocavity probes. Nano letters Shambat, G., Kothapalli, S., Provine, J., Sarmiento, T., Harris, J., Gambhir, S. S., Vuckovic, J. 2013; 13 (11): 4999-5005

    Abstract

    In this report, we demonstrate for the first time photonic nanocavities operating inside single biological cells. Here we develop a nanobeam photonic crystal (PC) cavity as an advanced cellular nanoprobe, active in nature, and configurable to provide a multitude of actions for both intracellular sensing and control. Our semiconductor nanocavity probes emit photoluminescence (PL) from embedded quantum dots (QD) and sustain high quality resonant photonic modes inside cells. The probes are shown to be minimally cytotoxic to cells from viability studies, and the beams can be loaded in cells and tracked for days at a time, with cells undergoing regular division with the beams. We present in vitro label-free protein sensing with our probes to detect streptavidin as a path towards real-time biomarker and biomolecule detection inside single cells. The results of this work will enable new areas of research merging the strengths of photonic nanocavities with fundamental cell biology.

    View details for DOI 10.1021/nl304602d

    View details for PubMedID 23387382

  • Vacuum encapsulated resonators for humidity measurement SENSORS AND ACTUATORS B-CHEMICAL Hennessy, R. G., Shulaker, M. M., Messana, M., Graham, A. B., Klejwa, N., Provine, J., Kenny, T. W., Howe, R. T. 2013; 185: 575-581
  • Laterally Actuated Platinum-Coated Polysilicon NEM Relays JOURNAL OF MICROELECTROMECHANICAL SYSTEMS Parsa, R., Lee, W. S., Shavezipur, M., Provine, J., Maboudian, R., Mitra, S., Wong, H. P., Howe, R. T. 2013; 22 (3): 768-778
  • Combinational Logic Design Using Six-Terminal NEM Relays IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS Lee, D., Lee, W. S., Chen, C., Fallah, F., Provine, J., Chong, S., Watkins, J., Howe, R. T., Wong, H. P., Mitra, S. 2013; 32 (5): 653-666
  • LATERALLY ACTUATED NANOELECTROMECHANICAL RELAYS WITH COMPLIANT, LOW RESISTANCE CONTACT 26th IEEE International Conference on Micro Electro Mechanical Systems (MEMS) Shavezipur, M., Lee, W. S., Harrison, K. L., Provine, J., Mitra, S., Wong, H. P., Howe, R. T. IEEE. 2013: 520–523
  • SUB-10 NANOMETER UNCOOLED PLATINUM BOLOMETERS VIA PLASMA ENHANCED ATOMIC LAYER DEPOSITION Purkl, F., English, T., Yama, G., Provine, J., Samarao, A. K., Feyh, A., O'Brien, G., Ambacher, O., Howe, R. T., Kenny, T. W., IEEE IEEE. 2013: 185–88
  • Single-cell Photonic Nanocavity Probes Shambat, G., Kothapalli, R., Provine, J., Sarmiento, T., Harris, J., Gambhir, S., Vuckovic, J., IEEE IEEE. 2013
  • Control of DNA Capture by Nanofluidic Transistors ACS NANO Paik, K., Liu, Y., Tabard-Cossa, V., Waugh, M. J., Huber, D. E., Provine, J., Howe, R. T., Dutton, R. W., Davis, R. W. 2012; 6 (8): 6767-6775

    Abstract

    We report the use of an array of electrically gated ~200 nm solid-state pores as nanofluidic transistors to manipulate the capture and passage of DNA. The devices are capable of reversibly altering the rate of DNA capture by over 3 orders of magnitude using sub-1 V biasing of a gate electrode. This efficient gating originates from the counter-balance of electrophoresis and electroosmosis, as revealed by quantitative numerical simulations. Such a reversible electronically tunable biomolecular switch may be used to manipulate nucleic acid delivery in a fluidic circuit, and its development is an important first step toward active control of DNA motion through solid-state nanopores for sensing applications.

    View details for DOI 10.1021/nn3014917

    View details for Web of Science ID 000307988900029

    View details for PubMedID 22762282

    View details for PubMedCentralID PMC3429714

  • Microencapsulation of silicon cavities using a pulsed excimer laser JOURNAL OF MICROMECHANICS AND MICROENGINEERING Sedky, S., Tawfik, H., Ashour, M., Graham, A. B., Provine, J., Wang, Q., Zhang, X. X., Howe, R. T. 2012; 22 (7)
  • A dry wafer-reconstitution process with zero insertion force by embedded alignment guide tabs JOURNAL OF MICROMECHANICS AND MICROENGINEERING Chen, J. P., Provine, J., Klejwa, N., Howe, R. T. 2012; 22 (6)
  • A photonic crystal cavity-optical fiber tip nanoparticle sensor for biomedical applications APPLIED PHYSICS LETTERS Shambat, G., Kothapalli, S. R., Khurana, A., Provine, J., Sarmiento, T., Cheng, K., Cheng, Z., Harris, J., Daldrup-Link, H., Gambhir, S. S., Vuckovic, J. 2012; 100 (21)

    View details for DOI 10.1063/1.4719520

    View details for Web of Science ID 000304489900085

  • Application of principal component analysis to a full profile correlative analysis of FTIR spectra SURFACE AND INTERFACE ANALYSIS Broderick, S. R., Suh, C., Provine, J., Roper, C. S., Maboudian, R., Howe, R. T., Rajan, K. 2012; 44 (3): 365-371

    View details for DOI 10.1002/sia.3813

    View details for Web of Science ID 000303250500014

  • Electrical and Thermal Conduction in Atomic Layer Deposition Nanobridges Down to 7 nm Thickness NANO LETTERS Yoneoka, S., Lee, J., Liger, M., Yama, G., Kodama, T., Gunji, M., Provine, J., Howe, R. T., Goodson, K. E., Kennyt, T. W. 2012; 12 (2): 683-686

    Abstract

    While the literature is rich with data for the electrical behavior of nanotransistors based on semiconductor nanowires and carbon nanotubes, few data are available for ultrascaled metal interconnects that will be demanded by these devices. Atomic layer deposition (ALD), which uses a sequence of self-limiting surface reactions to achieve high-quality nanolayers, provides an unique opportunity to study the limits of electrical and thermal conduction in metal interconnects. This work measures and interprets the electrical and thermal conductivities of free-standing platinum films of thickness 7.3, 9.8, and 12.1 nm in the temperature range from 50 to 320 K. Conductivity data for the 7.3 nm bridge are reduced by 77.8% (electrical) and 66.3% (thermal) compared to bulk values due to electron scattering at material and grain boundaries. The measurement results indicate that the contribution of phonon conduction is significant in the total thermal conductivity of the ALD films.

    View details for DOI 10.1021/nl203548w

    View details for PubMedID 22224582

  • Optical Fiber Tips Functionalized with Semiconductor Photonic Crystal Cavities Conference on Lasers and Electro-Optics (CLEO) Shambat, G., Provine, J., Rivoire, K., Sarmiento, T., Harris, J., Vuckovic, J. IEEE. 2012
  • Alternative Smoothing Techniques to Mitigate EUV Substrate Defectivity Teki, R., Kadaksham, A., House, M., Harris-Jones, J., Ma, A., Babu, S. V., Hariprasad, A., Dumas, P., Jenkins, R., Provine, J., Richmann, A., Stowers, J., Meyers, S., Dietze, U., Kusumoto, T., Yatsui, T., Ohtsu, M., Goodwin, F., Naulleau, P. P., Wood, O. R. SPIE-INT SOC OPTICAL ENGINEERING. 2012

    View details for DOI 10.1117/12.916497

    View details for Web of Science ID 000304874000008

  • Nano-Electro-Mechanical Relays for FPGA Routing: Experimental Demonstration and a Design Technique Chen, C., Lee, W., Parsa, R., Chong, S., Provine, J., Watt, J., Howe, R. T., Wong, H., Mitra, S., IEEE IEEE. 2012: 1361–66
  • Electrical Properties of CuPc-based OTFTs with Atomic Layer Deposited HfAlO Gate Dielectric 8th IEEE International Conference on Electron Devices and Solid State Circuit (EDSSC) Tang, W. M., Aboudi, U., Provine, J., Howe, R. T., Wong, H. P. IEEE. 2012
  • Double-Layer Silicon Photonic Crystal Fiber Tip Temperature Sensor 25th IEEE Photonics Conference (IPC) Park, B., Jung, I. W., Provine, J., Howe, R. T., Solgaard, O. IEEE. 2012: 550–551
  • Nano-Electro-Mechanical (NEM) Relays and their Application to FPGA Routing 17th Asia and South Pacific Design Automation Conference (ASP-DAC) Chen, C., Lee, S., Provine, J., Chong, S., Parsa, R., Lee, D., Howe, R. T., Wong, H. P., Mitra, S. IEEE. 2012: 639–639
  • Optical fiber tips functionalized with semiconductor photonic crystal cavities APPLIED PHYSICS LETTERS Shambat, G., Provine, J., Rivoire, K., Sarmiento, T., Harris, J., Vuckovic, J. 2011; 99 (19)

    View details for DOI 10.1063/1.3660278

    View details for Web of Science ID 000297030200002

  • Photonic Crystal Fiber Tip Sensor for High-Temperature Measurement IEEE SENSORS JOURNAL Park, B., Provine, J., Jung, I. W., Howe, R. T., Solgaard, O. 2011; 11 (11): 2643-2648
  • Multilayered Monolithic Silicon Photonic Crystals IEEE PHOTONICS TECHNOLOGY LETTERS Mallick, S. B., Jung, I. W., Meisner, A. M., Provine, J., Howe, R. T., Solgaard, O. 2011; 23 (11): 730-732
  • Linear Increases in Carbon Nanotube Density Through Multiple Transfer Technique NANO LETTERS Shulaker, M. M., Wei, H., Patil, N., Provine, J., Chen, H., Wong, H. P., Mitra, S. 2011; 11 (5): 1881-1886

    Abstract

    We present a technique to increase carbon nanotube (CNT) density beyond the as-grown CNT density. We perform multiple transfers, whereby we transfer CNTs from several growth wafers onto the same target surface, thereby linearly increasing CNT density on the target substrate. This process, called transfer of nanotubes through multiple sacrificial layers, is highly scalable, and we demonstrate linear CNT density scaling up to 5 transfers. We also demonstrate that this linear CNT density increase results in an ideal linear increase in drain-source currents of carbon nanotube field effect transistors (CNFETs). Experimental results demonstrate that CNT density can be improved from 2 to 8 CNTs/μm, accompanied by an increase in drain-source CNFET current from 4.3 to 17.4 μA/μm.

    View details for DOI 10.1021/nl200063x

    View details for Web of Science ID 000290373000005

    View details for PubMedID 21469727

  • Highly Sensitive Monolithic Silicon Photonic Crystal Fiber Tip Sensor for Simultaneous Measurement of Refractive Index and Temperature JOURNAL OF LIGHTWAVE TECHNOLOGY Jung, I. W., Park, B., Provine, J., Howe, R. T., Solgaard, O. 2011; 29 (9): 1367-1374
  • Electromechanical Sensing of Charge Retention on Floating Electrodes JOURNAL OF MICROELECTROMECHANICAL SYSTEMS Elata, D., Leus, V., Provine, J., Hirshberg, A., Howe, R. T. 2011; 20 (1): 150-156
  • Double-Layer Silicon Photonic Crystal Fiber Tip Sensor 16th International Conference on Optical MEMS and Nanophotonics (OMN) Park, B., Jung, I. W., Provine, J., Shambat, G., Vuckovic, J., Howe, R. T., Solgaard, O. IEEE. 2011: 97–98
  • LOW THERMAL-BUDGET SILICON SEALED-CAVITY MICROENCAPSULATION PROCESS Sedky, S., Tawfik, H., Aziz, A., ElSaegh, S., Graham, A. B., Provine, J., Howe, R. T., IEEE IEEE. 2011: 276–79
  • Experimental Demonstration and Analysis of DNA Passage in Nanopore-based Nanofluidic Transistors IEEE International Electron Devices Meeting (IEDM) Paik, K., Liu, Y., Tabard-Cossa, V., Huber, D. E., Provine, J., Howe, R. T., Davis, R. W., Dutton, R. W. IEEE. 2011
  • Integration of Nanoelectromechanical (NEM) Relays with Silicon CMOS with Functional CMOS-NEM Circuit IEEE International Electron Devices Meeting (IEDM) Chong, S., Lee, B., Parizi, K. B., Provine, J., Mitra, S., Howe, R. T., Wong, H. P. IEEE. 2011
  • ALD-METAL UNCOOLED BOLOMETER 24th IEEE International Conference on Micro Electro Mechanical Systems (MEMS) Yoneoka, S., Liger, M., Yama, G., Schuster, R., Purkl, F., Provine, J., Prinz, F. B., Howe, R. T., Kenny, T. W. IEEE. 2011: 676–679
  • Characterization of Encapsulated Micromechanical Resonators Sealed and Coated With Polycrystalline SiC JOURNAL OF MICROELECTROMECHANICAL SYSTEMS Yoneoka, S., Roper, C. S., Candler, R. N., Chandorkar, S. A., Graham, A. B., Provine, J., Maboudian, R., Howe, R. T., Kenny, T. W. 2010; 19 (2): 357-366
  • A Method for Wafer-Scale Encapsulation of Large Lateral Deflection MEMS Devices JOURNAL OF MICROELECTROMECHANICAL SYSTEMS Graham, A. B., Messana, M. W., Hartwell, P. G., Provine, J., Yoneoka, S., Melamud, R., Kim, B., Howe, R. T., Kenny, T. W. 2010; 19 (1): 28-37
  • TITANIUM NITRIDE SIDEWALL STRINGER PROCESS FOR LATERAL NANOELECTROMECHANICAL RELAYS 23rd IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2010) Lee, D., Lee, W. S., Provine, J., Lee, J., Yoon, J., Howe, R. T., Mitra, S., Wong, H. P. IEEE. 2010: 456–459
  • Electromechanical Sensing of Charge Retention on Floating Electrodes 2010 IEEE Sensors Conference Elata, D., Leus, V., Hirshberg, A., Provine, J., Howe, R. T. IEEE. 2010: 1395–1398
  • pH Sensor Demonstrating a Layout Programmable Squeeze Pumped Microfluidic Platform 2010 IEEE Sensors Conference Klejwa, N., Provine, J., Howe, R. T. IEEE. 2010: 936–939
  • High Temperature Photonic Crystal Fiber Tip Sensor 2010 IEEE Sensors Conference Park, B., Provine, J., Howe, R. T., Solgaard, O., Jung, I. W. IEEE. 2010: 970–974
  • Monolithic Silicon Photonic Crystal Fiber Tip Sensor for Refractive Index and Temperature Sensing Conference on Lasers and Electro-Optics (CLEO)/Quantum Electronics and Laser Science Conference (QELS) Park, B., Jung, I. W., Provine, J., Howe, R. T., Solgaard, O. IEEE. 2010
  • Device and Circuit Interactive Design and Optimization Beyond the Conventional Scaling Era International Electron Devices Meeting (IEDM) Oh, S., Wei, L., Chong, S., Luo, J., Wong, H. P. IEEE. 2010
  • Efficient FPGAs using Nanoelectromechanical Relays 18th ACM International Symposium on Field-Programmable Gate Arrays Chen, C., Parsa, R., Patil, N., Chong, S., Akarvardar, K., Provine, J., Lewis, D., Watt, J., Howe, R. T., Wong, H. P., Mitra, S. ASSOC COMPUTING MACHINERY. 2010: 273–282
  • Laser print patterning of planar spiral inductors and interdigitated capacitors JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B Klejwa, N., Misra, R., Provine, J., Howe, R. T., Klejwa, S. J. 2009; 27 (6): 2745-2749

    View details for DOI 10.1116/1.3264673

    View details for Web of Science ID 000272803400084

  • Experimental Investigation of Silicon Surface Migration in Low Pressure Nonreducing Gas Environments ELECTROCHEMICAL AND SOLID STATE LETTERS Kant, R., Ferralis, N., Provine, J., Maboudian, R., Howe, R. T. 2009; 12 (12): H437-H440

    View details for DOI 10.1149/1.3236781

    View details for Web of Science ID 000270915300022

  • WAFER SCALE ENCAPSULATION OF LARGE LATERAL DEFLECTION MEMS STRUCTURES 22nd International Conference on Micro Electro Mechanical Systems (MEMS) Graham, A. B., Messana, M., Hartwell, P., Provine, J., Yoneoka, S., Kim, B., Melamud, R., Howe, R. T., Kenny, T. W. IEEE. 2009: 745–748
  • Photonic Crystal Fiber Tip Sensor for Precision Temperature Sensing 22nd Annual Meeting of the IEEE-Photonics-Society Jung, I. W., Park, B., Provine, J., Howe, R. T., Solgaard, O. IEEE. 2009: 761–762
  • The Dependence of Poly-crystalline SiC Mid-Infrared Optical Properties on Deposition Conditions IEEE/LEOS International Conference on Optical MEMS and Nanophotonics Provine, J., Roper, C., Schuller, J. A., Brongersma, M. L., Maboudian, R., Howe, R. T. IEEE. 2008: 182–183
  • Silicon nanowire coupled micro-resonators 21st IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2008) Arellano, N., Quevy, E. P., Provine, J., Maboudian, R., Howe, R. T. IEEE. 2008: 721–724
  • Tunable subwavelength-metal gratings in the mid-IR band IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS Provine, J., Skinner, J. L., Horsley, D. A. 2007; 13 (2): 270–76
  • Design considerations for complementary nanoelectromechanical logic gates IEEE International Electron Devices Meeting Akarvardar, K., Elata, D., Parsa, R., WAN, G. C., Yoo, K., Provine, J., Peurnans, P., Howe, R. T., Wong, H. P. IEEE. 2007: 299–302
  • Extraordinary transmission through a poly-SiC membrane with subwavelength hole arrays IEEE/LEOS International Conference on Optical MEMS and Nanophotonics Provine, J., Catrysse, P. B., Roper, C., Maboudian, R., Fan, S., Howe, R. T. IEEE. 2007: 157–158
  • Phonon polariton reflectance spectra in a silicon carbide membrane hole array 20th Annual Meeting of the IEEE-Lasers-and-Electro-Optics-Society Provine, J., Catrysse, P. B., Roper, C. S., Maboudian, R., Fan, S., Howe, R. T. IEEE. 2007: 466–467
  • Effect of a vertical stack of aligned subwavelength metal hole arrays on extraordinary transmission spectra IEEE/LEOS International Conference on Optical MEMS and Nanophotonics Provine, J., Kant, R., Horsley, D. A., Howe, R. T. IEEE. 2007: 117–118