Professional Education

  • Doctor of Philosophy, Universiteit Van Amsterdam (2015)
  • Bachelor of Science, Universiteit Utrecht (2009)
  • Master of Science, Universiteit Utrecht (2011)
  • PhD, FOM Institute AMOLF, University of Amsterdam (2015)

Stanford Advisors

All Publications

  • Metasurface Mirrors for External Control of Mie Resonances. Nano letters van de Groep, J., Brongersma, M. L. 2018


    The ability to control and structurally tune the optical resonances of semiconductor nanostructures has far-reaching implications for a wide range of optical applications, including photodetectors, (bio)sensors, and photovoltaics. Such control is commonly obtained by tailoring the nanostructure's geometry, material, or dielectric environment. Here, we combine insights from the field of coherent optics and metasurface mirrors to effectively turn Mie resonances on and off with high spatial control and in a polarization-dependent fashion. We illustrate this in an integrated device by manipulating the photocurrent spectra of a single-nanowire photodetector placed on a metasurface mirror. This approach can be generalized to control spectral, angle-dependent, absorption, and scattering properties of semiconductor nanostructures with an engineered metasurface and without a need to alter their geometric or materials properties.

    View details for DOI 10.1021/acs.nanolett.8b01148

    View details for PubMedID 29787285

  • Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics NATURE NANOTECHNOLOGY Gong, Y., Yuan, H., Wu, C., Tang, P., Yang, S., Yang, A., Li, G., Liu, B., van de Groep, J., Brongersma, M. L., Chisholm, M. F., Zhang, S., Zhou, W., Cui, Y. 2018; 13 (4): 294-+


    Doped semiconductors are the most important building elements for modern electronic devices 1 . In silicon-based integrated circuits, facile and controllable fabrication and integration of these materials can be realized without introducing a high-resistance interface2,3. Besides, the emergence of two-dimensional (2D) materials enables the realization of atomically thin integrated circuits4-9. However, the 2D nature of these materials precludes the use of traditional ion implantation techniques for carrier doping and further hinders device development 10 . Here, we demonstrate a solvent-based intercalation method to achieve p-type, n-type and degenerately doped semiconductors in the same parent material at the atomically thin limit. In contrast to naturally grown n-type S-vacancy SnS2, Cu intercalated bilayer SnS2 obtained by this technique displays a hole field-effect mobility of ~40 cm2 V-1 s-1, and the obtained Co-SnS2 exhibits a metal-like behaviour with sheet resistance comparable to that of few-layer graphene 5 . Combining this intercalation technique with lithography, an atomically seamless p-n-metal junction could be further realized with precise size and spatial control, which makes in-plane heterostructures practically applicable for integrated devices and other 2D materials. Therefore, the presented intercalation method can open a new avenue connecting the previously disparate worlds of integrated circuits and atomically thin materials.

    View details for DOI 10.1038/s41565-018-0069-3

    View details for Web of Science ID 000429935600013

    View details for PubMedID 29483599