All Publications


  • Affinity-Directed Dynamics of Host-Guest Motifs for Pharmacokinetic Modulation via Supramolecular PEGylation. Biomacromolecules Maikawa, C. L., d'Aquino, A. I., Vuong, E. T., Su, B., Zou, L., Chen, P. C., Nguyen, L. T., Autzen, A. A., Mann, J. L., Webber, M. J., Appel, E. A. 2021

    Abstract

    Proteins are an impactful class of therapeutics but can exhibit suboptimal therapeutic performance, arising from poor control over the timescale of clearance. Covalent PEGylation is one established strategy to extend circulation time but often at the cost of reduced activity and increased immunogenicity. Supramolecular PEGylation may afford similar benefits without necessitating that the protein be permanently modified with a polymer. Here, we show that insulin pharmacokinetics can be modulated by tuning the affinity-directed dynamics of a host-guest motif used to non-covalently endow insulin with a poly(ethylene glycol) (PEG) chain. When administered subcutaneously, supramolecular PEGylation with higher binding affinities extends the time of total insulin exposure systemically. Pharmacokinetic modeling reveals that the extension in the duration of exposure arises specifically from decreased absorption from the subcutaneous depot governed directly by the affinity and dynamics of host-guest exchange. The lifetime of the supramolecular interaction thus dictates the rate of absorption, with negligible impact attributed to association of the PEG upon rapid dilution of the supramolecular complex in circulation. This modular approach to supramolecular PEGylation offers a powerful tool to tune protein pharmacokinetics in response to the needs of different disease applications.

    View details for DOI 10.1021/acs.biomac.1c00648

    View details for PubMedID 34314146

  • Engineering Insulin Cold Chain Resilience to Improve Global Access. Biomacromolecules Maikawa, C. L., Mann, J. L., Kannan, A., Meis, C. M., Grosskopf, A. K., Ou, B. S., Autzen, A. A., Fuller, G. G., Maahs, D. M., Appel, E. A. 2021

    Abstract

    There are 150 million people with diabetes worldwide who require insulin replacement therapy, and the prevalence of diabetes is rising the fastest in middle- and low-income countries. The current formulations require costly refrigerated transport and storage to prevent loss of insulin integrity. This study shows the development of simple "drop-in" amphiphilic copolymer excipients to maintain formulation integrity, bioactivity, pharmacokinetics, and pharmacodynamics for over 6 months when subjected to severe stressed aging conditions that cause current commercial formulation to fail in under 2 weeks. Further, when these copolymers are added to Humulin R (Eli Lilly) in original commercial packaging, they prevent insulin aggregation for up to 4 days at 50 °C compared to less than 1 day for Humulin R alone. These copolymers demonstrate promise as simple formulation additives to increase the cold chain resilience of commercial insulin formulations, thereby expanding global access to these critical drugs for treatment of diabetes.

    View details for DOI 10.1021/acs.biomac.1c00474

    View details for PubMedID 34213889

  • Full closed loop open-source algorithm performance comparison in pigs with diabetes. Clinical and translational medicine Lal, R. A., Maikawa, C. L., Lewis, D., Baker, S. W., Smith, A. A., Roth, G. A., Gale, E. C., Stapleton, L. M., Mann, J. L., Yu, A. C., Correa, S., Grosskopf, A. K., Liong, C. S., Meis, C. M., Chan, D., Garner, J. P., Maahs, D. M., Buckingham, B. A., Appel, E. A. 2021; 11 (4): e387

    Abstract

    Understanding how automated insulin delivery (AID) algorithm features impact glucose control under full closed loop delivery represents a critical step toward reducing patient burden by eliminating the need for carbohydrate entries at mealtimes. Here, we use a pig model of diabetes to compare AndroidAPS and Loop open-source AID systems without meal announcements. Overall time-in-range (70-180mg/dl) for AndroidAPS was 58% ± 5%, while time-in-range for Loop was 35% ± 5%. The effect of the algorithms on time-in-range differed between meals and overnight. During the overnight monitoring period, pigs had an average time-in-range of 90% ± 7% when on AndroidAPS compared to 22% ± 8% on Loop. Time-in-hypoglycemia also differed significantly during the lunch meal, whereby pigs running AndroidAPS spent an average of 1.4% (+0.4/-0.8)% in hypoglycemia compared to 10% (+3/-6)% for those using Loop. As algorithm design for closed loop systems continues to develop, the strategies employed in the OpenAPS algorithm (known as oref1) as implemented in AndroidAPS for unannounced meals may result in a better overall control for full closed loop systems.

    View details for DOI 10.1002/ctm2.387

    View details for PubMedID 33931977

  • Enhanced Humoral Immune Response by High Density TLR Agonist Presentation on Hyperbranched Polymers ADVANCED THERAPEUTICS Liong, C. S., Smith, A. A., Mann, J. L., Roth, G. A., Gale, E. C., Maikawa, C. L., Ou, B. S., Appel, E. A. 2021
  • Lipid Nanodiscs via Ordered Copolymers CHEM Smith, A. A., Autzen, H. E., Faust, B., Mann, J. L., Muir, B. W., Howard, S., Postma, A., Spakowitz, A. J., Cheng, Y., Appel, E. A. 2020; 6 (10): 2782–95
  • Highly Branched Polydimethylacrylamide Copolymers as Functional Biomaterials. Biomacromolecules Mann, J. L., Grosskopf, A. K., Smith, A. A., Appel, E. A. 2020

    Abstract

    Controlled radical polymerization of vinyl monomers with multivinyl cross-linkers leads to the synthesis of highly branched polymers with controlled spatial density of functional chain ends. The resulting polymers synthesized in this manner have large dispersities resulting from a mixture of unreacted primary chains, low molecular weight branched species, and high molecular weight highly branched species. Through the use of fractional precipitation, we present a synthetic route to high molecular weight highly branched polymers that are absent of low molecular weight species and that contain reactivity toward amines for controlled postpolymerization modification. The controlled spatial density of functional moieties on these high molecular weight macromolecular constructs enable new functional biomaterials with the potential for application in regenerative medicine, immunoengineering, imaging, and controlled drug delivery.

    View details for DOI 10.1021/acs.biomac.0c00539

    View details for PubMedID 32786733

  • An ultrafast insulin formulation enabled by high-throughput screening of engineered polymeric excipients. Science translational medicine Mann, J. L., Maikawa, C. L., Smith, A. A., Grosskopf, A. K., Baker, S. W., Roth, G. A., Meis, C. M., Gale, E. C., Liong, C. S., Correa, S., Chan, D., Stapleton, L. M., Yu, A. C., Muir, B., Howard, S., Postma, A., Appel, E. A. 2020; 12 (550)

    Abstract

    Insulin has been used to treat diabetes for almost 100 years; yet, current rapid-acting insulin formulations do not have sufficiently fast pharmacokinetics to maintain tight glycemic control at mealtimes. Dissociation of the insulin hexamer, the primary association state of insulin in rapid-acting formulations, is the rate-limiting step that leads to delayed onset and extended duration of action. A formulation of insulin monomers would more closely mimic endogenous postprandial insulin secretion, but monomeric insulin is unstable in solution using present formulation strategies and rapidly aggregates into amyloid fibrils. Here, we implement high-throughput-controlled radical polymerization techniques to generate a large library of acrylamide carrier/dopant copolymer (AC/DC) excipients designed to reduce insulin aggregation. Our top-performing AC/DC excipient candidate enabled the development of an ultrafast-absorbing insulin lispro (UFAL) formulation, which remains stable under stressed aging conditions for 25 ± 1 hours compared to 5 ± 2 hours for commercial fast-acting insulin lispro formulations (Humalog). In a porcine model of insulin-deficient diabetes, UFAL exhibited peak action at 9 ± 4 min, whereas commercial Humalog exhibited peak action at 25 ± 10 min. These ultrafast kinetics make UFAL a promising candidate for improving glucose control and reducing burden for patients with diabetes.

    View details for DOI 10.1126/scitranslmed.aba6676

    View details for PubMedID 32611683

  • Stable Monomeric Insulin Formulations Enabled by Supramolecular PEGylation of Insulin Analogues. Advanced therapeutics Maikawa, C. L., Smith, A. A., Zou, L. n., Meis, C. M., Mann, J. L., Webber, M. J., Appel, E. A. 2020; 3 (1)

    Abstract

    Current "fast-acting" insulin analogues contain amino acid modifications meant to inhibit dimer formation and shift the equilibrium of association states toward the monomeric state. However, the insulin monomer is highly unstable and current formulation techniques require insulin to primarily exist as hexamers to prevent aggregation into inactive and immunogenic amyloids. Insulin formulation excipients have thus been traditionally selected to promote insulin association into the hexameric form to enhance formulation stability. This study exploits a novel excipient for the supramolecular PEGylation of insulin analogues, including aspart and lispro, to enhance the stability and maximize the prevalence of insulin monomers in formulation. Using multiple techniques, it is demonstrated that judicious choice of formulation excipients (tonicity agents and parenteral preservatives) enables insulin analogue formulations with 70-80% monomer and supramolecular PEGylation imbued stability under stressed aging for over 100 h without altering the insulin association state. Comparatively, commercial "fast-acting" formulations contain less than 1% monomer and remain stable for only 10 h under the same stressed aging conditions. This simple and effective formulation approach shows promise for next-generation ultrafast insulin formulations with a short duration of action that can reduce the risk of post-prandial hypoglycemia in the treatment of diabetes.

    View details for DOI 10.1002/adtp.201900094

    View details for PubMedID 32190729

    View details for PubMedCentralID PMC7079736

  • A co-formulation of supramolecularly stabilized insulin and pramlintide enhances mealtime glucagon suppression in diabetic pigs. Nature biomedical engineering Maikawa, C. L., Smith, A. A., Zou, L. n., Roth, G. A., Gale, E. C., Stapleton, L. M., Baker, S. W., Mann, J. L., Yu, A. C., Correa, S. n., Grosskopf, A. K., Liong, C. S., Meis, C. M., Chan, D. n., Troxell, M. n., Maahs, D. M., Buckingham, B. A., Webber, M. J., Appel, E. A. 2020

    Abstract

    Treatment of patients with diabetes with insulin and pramlintide (an amylin analogue) is more effective than treatment with insulin only. However, because mixtures of insulin and pramlintide are unstable and have to be injected separately, amylin analogues are only used by 1.5% of people with diabetes needing rapid-acting insulin. Here, we show that the supramolecular modification of insulin and pramlintide with cucurbit[7]uril-conjugated polyethylene glycol improves the pharmacokinetics of the dual-hormone therapy and enhances postprandial glucagon suppression in diabetic pigs. The co-formulation is stable for over 100 h at 37 °C under continuous agitation, whereas commercial formulations of insulin analogues aggregate after 10 h under similar conditions. In diabetic rats, the administration of the stabilized co-formulation increased the area-of-overlap ratio of the pharmacokinetic curves of pramlintide and insulin from 0.4 ± 0.2 to 0.7 ± 0.1 (mean ± s.d.) for the separate administration of the hormones. The co-administration of supramolecularly stabilized insulin and pramlintide better mimics the endogenous kinetics of co-secreted insulin and amylin, and holds promise as a dual-hormone replacement therapy.

    View details for DOI 10.1038/s41551-020-0555-4

    View details for PubMedID 32393892

  • Universal Scaling Behavior during Network Formation in Controlled Radical Polymerizations. Macromolecules Mann, J. L., Rossi, R. L., Smith, A. A., Appel, E. A. 2019; 52 (24): 9456–65

    Abstract

    Despite the ubiquity of branched and network polymers in biological, electronic, and rheological applications, it remains difficult to predict the network structure arising from polymerization of vinyl and multivinyl monomers. While controlled radical polymerization (CRP) techniques afford modularity and control in the synthesis of (hyper)branched polymers, a unifying understanding of network formation providing grounded predictive power is still lacking. A current limitation is the inability to predict the number and weight average molecular weights that arise during the synthesis of (hyper)branched polymers using CRP. This study addresses this literature gap through first building intuition via a growth boundary analysis on how certain environmental cues (concentration, monomer choice, and cross-linker choice) affect the cross-link efficiency during network formation through experimental gel point measurements. We then demonstrate, through experimental gel point normalization, universal scaling behavior of molecular weights in the synthesis of branched polymers corroborated by previous literature experiments. Moreover, the normalization employed in this analysis reveals trends in the macroscopic mechanical properties of networks synthesized using CRP techniques. Gel point normalization employed in this analysis both enables a polymer chemist to target specific number and weight average molecular weights of (hyper)branched polymers using CRP and demonstrates the utility of CRP for gel synthesis.

    View details for DOI 10.1021/acs.macromol.9b02109

    View details for PubMedID 31894160

  • Stable Monomeric Insulin Formulations Enabled by Supramolecular PEGylation of Insulin Analogues ADVANCED THERAPEUTICS Maikawa, C. L., Smith, A. A., Zou, L., Meis, C. M., Mann, J. L., Webber, M. J., Appel, E. A. 2019
  • Block copolymer composition drives function of self-assembled nanoparticles for delivery of small-molecule cargo JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY Maikawa, C. L., Sevit, A., Lin, B., Wallstrom, R. J., Mann, J. L., Yu, A. C., Waymouth, R. M., Appel, E. A. 2019; 57 (12): 1322–32

    View details for DOI 10.1002/pola.29393

    View details for Web of Science ID 000469938700008

  • Block copolymer composition drives function of self-assembled nanoparticles for delivery of small-molecule cargo. Journal of polymer science. Part A, Polymer chemistry Maikawa, C. L., Sevit, A. n., Lin, B. n., Wallstrom, R. J., Mann, J. L., Yu, A. C., Waymouth, R. M., Appel, E. A. 2019; 57 (12): 1322–32

    Abstract

    Nanoparticles are useful for the delivery of small molecule therapeutics, increasing their solubility, in vivo residence time, and stability. Here, we used organocatalytic ring opening polymerization to produce amphiphilic block copolymers for the formation of nanoparticle drug carriers with enhanced stability, cargo encapsulation, and sustained delivery. These polymers comprised blocks of poly(ethylene glycol) (PEG), poly(valerolactone) (PVL), and poly(lactide) (PLA). Four particle chemistries were examined: (a) PEG-PLA, (b) PEG-PVL, (c) a physical mixture of PEG-PLA and PEG-PVL, and (d) PEG-PVL-PLA tri-block copolymers. Nanoparticle stability was assessed at room temperature (20 °C; pH = 7), physiological temperature (37 °C; pH = 7), in acidic media (37 °C; pH = 2), and with a digestive enzyme (lipase; 37 °C; pH = 7.4). PVL-based nanoparticles demonstrated the highest level of stability at room temperature, 37 °C and acidic conditions, but were rapidly degraded by lipase. Moreover, PVL-based nanoparticles demonstrated good cargo encapsulation, but rapid release. In contrast, PLA-based nanoparticles demonstrated poor stability and encapsulation, but sustained release. The PEG-PVL-PLA nanoparticles exhibited the best combination of stability, encapsulation, and release properties. Our results demonstrate the ability to tune nanoparticle properties by modifying the polymeric architecture and composition. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1322-1332.

    View details for DOI 10.1002/pola.29393

    View details for PubMedID 31244507

    View details for PubMedCentralID PMC6582505

  • Self-assembled biomaterials using host-guest interactions SELF-ASSEMBLING BIOMATERIALS: MOLECULAR DESIGN, CHARACTERIZATION AND APPLICATION IN BIOLOGY AND MEDICINE Yu, A. C., Stapleton, L. M., Mann, J. L., Appel, E. A., Azevedo, H. S., DaSilva, R. M. 2018: 205–31
  • Supramolecular polymeric biomaterials. Biomaterials science Mann, J. L., Yu, A. C., Agmon, G., Appel, E. A. 2017

    Abstract

    Polymeric chains crosslinked through supramolecular interactions-directional and reversible non-covalent interactions-compose an emerging class of modular and tunable biomaterials. The choice of chemical moiety utilized in the crosslink affords different thermodynamic and kinetic parameters of association, which in turn illustrate the connectivity and dynamics of the system. These parameters, coupled with the choice of polymeric architecture, can then be engineered to control environmental responsiveness, viscoelasticity, and cargo diffusion profiles, yielding advanced biomaterials which demonstrate rapid shear-thinning, self-healing, and extended release. In this review we examine the relationship between supramolecular crosslink chemistry and biomedically relevant macroscopic properties. We then describe how these properties are currently leveraged in the development of materials for drug delivery, immunology, regenerative medicine, and 3D-bioprinting (253 references).

    View details for PubMedID 29164196

  • Supramolecular polymeric biomaterials BIOMATERIALS SCIENCE Mann, J. L., Yu, A. C., Agmon, G., Appel, E. A. 2017; 6 (1): 10-37

    View details for DOI 10.1039/c7bm00780a

    View details for Web of Science ID 000418346500001