Julia Kaltschmidt
Associate Professor of Neurosurgery
Bio
I am a Wu Tsai Neurosciences Institute Faculty Scholar and an Associate Professor in the Department of Neurosurgery at Stanford Medical School. Originally from Germany, I received my undergraduate degree in Molecular Biology and Biochemistry from the University of Madison, Wisconsin. I then completed my PhD at the University of Cambridge in the UK, where I trained as a developmental biologist and studied the cellular mechanisms underlying early Drosophila nervous system development. During my postdoc at Columbia University, I began working with mouse as a model system, and became interested in mechanisms that underlie sensory-motor circuit connectivity in the spinal cord. I continued to explore the development and molecular regulation of spinal circuity as an Assistant Professor at the Sloan Kettering Institute in New York City. During this time, the focus of my laboratory further expanded to include neuronal circuits that underlie sexual function and gut motility.
Academic Appointments
-
Associate Professor, Neurosurgery
-
Member, Bio-X
-
Member, Wu Tsai Neurosciences Institute
Administrative Appointments
-
Wu Tsai Neurosciences Institute Faculty Scholar, Wu Tsai Neurosciences Institute (2017 - Present)
-
Associate Professor, Department of Neurosurgery, Stanford University (2017 - Present)
-
Assistant Professor, Cell and Developmental Biology Program, Weill Cornell Graduate School of Medical Sciences (2008 - 2017)
-
Assistant Professor, Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (2008 - 2017)
Honors & Awards
-
Developmental Project Grant, Stanford Alzheimer's Disease Research Center (2023-2025)
-
Transdisciplinary Initiatives Program, Stanford Maternal and Child Health Research Institute (2023-2025)
-
Interdisciplinary Initiatives Program Seed Grant, Bio-X (2022-2024)
-
Neurosurgery Research Seed Grant, Stanford Dept of Neurosurgery (2022-2024)
-
Early Career Award, Carol and Eugene Ludwig Family Foundation (2022-2023)
-
MCHRI Pilot Grant, Stanford Maternal and Child Health Research Institute (2022-2022)
-
Firmenich Next Generation Faculty Scholar, Firmenich Next Generation Faculty Fund (2021-2024)
-
Beckman Technology Development Seed Grant, Beckman Foundation (2021-2023)
-
Research Grant, Shurl and Kay Curci Foundation (2020-2021)
-
Louis V. Gerstner, Jr. Young Investigator Award, Gerstner Family Foundation (2009-2012)
-
Whitehall Research Grant, Whitehall Foundation (2009-2012)
-
Wellcome Prize Traveling Research Fellowship, Wellcome Trust (2001-2003)
Boards, Advisory Committees, Professional Organizations
-
Editorial Board Member, Neural Development (2023 - Present)
-
Co-Editor-in-Chief, Neural Development (2019 - 2022)
Professional Education
-
Postdoc, Columbia University, Neurobiology (2008)
-
PhD, University of Cambridge (UK), Developmental Biology (2002)
Current Research and Scholarly Interests
The lab’s goal is to understand the molecular basis of neuronal circuit formation. We are particularly interested in circuits that underlie locomotion, sexual function and gut motility.
Spinal circuits underlying locomotor function:
Local inhibitory microcircuits have a fundamental role in shaping animal behavior. In the mammalian spinal cord inhibitory interneurons modulate the sensory-motor signaling that controls locomotion. We are using a specific interneuron circuit to understand (i) how distinct neuronal populations are generated, (ii) how these distinct neuronal populations recognize and choose their correct synaptic partners from among different available targets, and (iii) how postsynaptic signals induce the differentiation of presynaptic terminals in service of balanced circuit function.
Spinal circuitry of sexual function:
During mammalian copulation, spinal circuits reflexively integrate sexually-specific sensory information. We are performing anatomical reconstructions of erectile circuits in the spinal cord, and are analyzing copulatory behavior in males with disrupted interneuron circuitry.
Enteric nervous system structure and function:
The enteric nervous system (ENS) in the gut contains more neurons than the spinal cord and presents a translational model relevant to many human illnesses. However, relatively little is known about the development, connectivity and function of ENS circuitry. The mouse ENS is experimentally tractable and allows application of molecular genetic and high-resolution imaging techniques, as well as innovative in vivo experimental approaches. We aim to (i) map ENS circuit connectivity and (ii) explore functional consequences of ENS circuit abnormalities.
2024-25 Courses
- Neurosciences Development Core
NEPR 202 (Win) -
Independent Studies (5)
- Directed Reading in Neurosciences
NEPR 299 (Aut, Win, Spr, Sum) - Directed Reading in Neurosurgery
NSUR 299 (Aut, Win, Spr, Sum) - Graduate Research
NEPR 399 (Aut, Win, Spr, Sum) - Graduate Research
STEMREM 399 (Aut, Win, Spr, Sum) - Undergraduate Research
NSUR 199 (Aut, Win, Spr, Sum)
- Directed Reading in Neurosciences
-
Prior Year Courses
2023-24 Courses
- Neurosciences Development Core
NEPR 202 (Win)
2022-23 Courses
- Neurosciences Development Core
NEPR 202 (Win)
2021-22 Courses
- Neurosciences Development Core
NEPR 202 (Win)
- Neurosciences Development Core
Stanford Advisees
-
Doctoral Dissertation Reader (AC)
URee Chon, Michelle Drews, Ellen Gingrich, Josh Head, Massimo Onesto, Cindy Shi, Kathryn Wu, Blake Zhou -
Postdoctoral Faculty Sponsor
Jen Shadrach -
Doctoral Dissertation Advisor (AC)
Jacqueline Bendrick, Cheyanne Lewis, Jack Marciano, Janelle Siliezar-Doyle, Adarsh Tantry -
Postdoctoral Research Mentor
Eric Zhao
All Publications
-
Achieving optical transparency in live animals with absorbing molecules.
Science (New York, N.Y.)
2024; 385 (6713): eadm6869
Abstract
Optical imaging plays a central role in biology and medicine but is hindered by light scattering in live tissue. We report the counterintuitive observation that strongly absorbing molecules can achieve optical transparency in live animals. We explored the physics behind this observation and found that when strongly absorbing molecules dissolve in water, they can modify the refractive index of the aqueous medium through the Kramers-Kronig relations to match that of high-index tissue components such as lipids. We have demonstrated that our straightforward approach can reversibly render a live mouse body transparent to allow visualization of a wide range of deep-seated structures and activities. This work suggests that the search for high-performance optical clearing agents should focus on strongly absorbing molecules.
View details for DOI 10.1126/science.adm6869
View details for PubMedID 39236186
-
Gut Analysis Toolbox: Automating quantitative analysis of enteric neurons.
Journal of cell science
2024
Abstract
The enteric nervous system (ENS) consists of an extensive network of neurons and glial cells embedded within the wall of the gastrointestinal (GI) tract. Alterations in neuronal distribution and function are strongly associated with GI dysfunction. Current methods for assessing neuronal distribution suffer from undersampling, partly due to challenges associated with imaging and analyzing large tissue areas, and operator bias due to manual analysis. We present the Gut Analysis Toolbox (GAT), an image analysis tool designed for characterization of enteric neurons and their neurochemical coding using 2D images of GI wholemount preparations. It is developed in Fiji, has a user-friendly interface and offers rapid and accurate segmentation via custom deep learning (DL) based cell segmentation models developed using StarDist, and a ganglion segmentation model in deepImageJ. We use proximal neighbor-based spatial analysis to reveal differences in cellular distribution across gut regions using a public dataset. In summary, GAT provides an easy-to-use toolbox to streamline routine image analysis tasks in ENS research. GAT enhances throughput allowing unbiased analysis of larger tissue areas, multiple neuronal markers and numerous samples rapidly.
View details for DOI 10.1242/jcs.261950
View details for PubMedID 39219476
-
Synaptic cell adhesion moleculeCdh6identifies a class of sensory neurons with novel functions in colonic motility.
bioRxiv : the preprint server for biology
2024
Abstract
Intrinsic sensory neurons are an essential part of the enteric nervous system (ENS) and play a crucial role in gastrointestinal tract motility and digestion. Neuronal subtypes in the ENS have been distinguished by their electrophysiological properties, morphology, and expression of characteristic markers, notably neurotransmitters and neuropeptides. Here we investigated synaptic cell adhesion molecules as novel cell type markers in the ENS. Our work identifies two Type II classic cadherins, Cdh6 and Cdh8, specific to sensory neurons in the mouse colon. We show that Cdh6+ neurons demonstrate all other distinguishing classifications of enteric sensory neurons including marker expression of Calcb and Nmu, Dogiel type II morphology and AH-type electrophysiology and I H current. Optogenetic activation of Cdh6+ sensory neurons in distal colon evokes retrograde colonic motor complexes (CMCs), while pharmacologic blockade of rhythmicity-associated current I H disrupts the spontaneous generation of CMCs. These findings provide the first demonstration of selective activation of a single neurochemical and functional class of enteric neurons, and demonstrate a functional and critical role for sensory neurons in the generation of CMCs.
View details for DOI 10.1101/2024.08.06.606748
View details for PubMedID 39149241
-
Spontaneous enteric nervous system activity generates contractile patterns prior to maturation of gastrointestinal motility.
Neurogastroenterology and motility
2024: e14890
Abstract
Spontaneous neuronal network activity is essential to the functional maturation of central and peripheral circuits, yet whether this is a feature of enteric nervous system development has yet to be established. Although enteric neurons are known exhibit electrophysiological properties early in embryonic development, no connection has been drawn between this neuronal activity and the development of gastrointestinal (GI) motility patterns.We use ex vivo GI motility assays with newly developed unbiased computational analyses to identify GI motility patterns across mouse embryonic development.We find a previously unknown pattern of neurogenic contractions termed "clustered ripples" that arises spontaneously at embryonic day 16.5, an age earlier than any identified mature GI motility patterns. We further show that these contractions are driven by nicotinic cholinergic signaling.Clustered ripples are neurogenic contractile activity that arise from spontaneous ENS activity and precede all known forms of neurogenic GI motility. This earliest motility pattern requires nicotinic cholinergic signaling, which may inform pharmacology for enhancing GI motility in preterm infants.
View details for DOI 10.1111/nmo.14890
View details for PubMedID 39118231
-
Temperature-dependent differences in mouse gut motility are mediated by stress.
Lab animal
2024
Abstract
Researchers have advocated elevating mouse housing temperatures from the conventional ~22 °C to the mouse thermoneutral point of 30 °C to enhance translational research. However, the impact of environmental temperature on mouse gastrointestinal physiology remains largely unexplored. Here we show that mice raised at 22 °C exhibit whole gut transit speed nearly twice as fast as those raised at 30 °C, primarily driven by a threefold increase in colon transit speed. Furthermore, gut microbiota composition differs between the two temperatures but does not dictate temperature-dependent differences in gut motility. Notably, increased stress signals from the hypothalamic-pituitary-adrenal axis at 22 °C have a pivotal role in mediating temperature-dependent differences in gut motility. Pharmacological and genetic depletion of the stress hormone corticotropin-releasing hormone slows gut motility in stressed 22 °C mice but has no comparable effect in relatively unstressed 30 °C mice. In conclusion, our findings highlight that colder mouse facility temperatures significantly increase gut motility through hormonal stress pathways.
View details for DOI 10.1038/s41684-024-01376-5
View details for PubMedID 38806681
View details for PubMedCentralID 3371737
-
Enteric nervous system striped patterning and disease: unexplored pathophysiology.
Cellular and molecular gastroenterology and hepatology
2024
Abstract
The enteric nervous system (ENS) controls gastrointestinal (GI) motility, and defects in ENS development underlie pediatric GI motility disorders. In disorders such as Hirschsprung's disease (HSCR), pediatric intestinal pseudo-obstruction (PIPO), and intestinal neuronal dysplasia type B (INDB), ENS structure is altered with noted decreased neuronal density in HSCR and reports of increased neuronal density in PIPO and INDB. The developmental origin of these structural deficits is not fully understood. Here, we review the current understanding of ENS development and pediatric GI motility disorders incorporating new data on ENS structure. In particular, emerging evidence demonstrates that enteric neurons are patterned into circumferential stripes along the longitudinal axis of the intestine during mouse and human development. This novel understanding of ENS structure proposes new questions about the pathophysiology of pediatric GI motility disorders. If the ENS is organized into stripes, could the observed changes in enteric neuron density in HSCR, PIPO, and INDB represent differences in the distribution of enteric neuronal stripes? Here, we review mechanisms of striped patterning from other biological systems and propose how defects in striped ENS patterning could explain structural deficits observed in pediatric GI motility disorders.
View details for DOI 10.1016/j.jcmgh.2024.03.004
View details for PubMedID 38479486
-
Loss of ASD-related molecule Cntnap2 affects colonic motility in mice.
Frontiers in neuroscience
2023; 17: 1287057
Abstract
Gastrointestinal (GI) symptoms are highly prevalent among individuals with autism spectrum disorder (ASD), but the molecular link between ASD and GI dysfunction remains poorly understood. The enteric nervous system (ENS) is critical for normal GI motility and has been shown to be altered in mouse models of ASD and other neurological disorders. Contactin-associated protein-like 2 (Cntnap2) is an ASD-related synaptic cell-adhesion molecule important for sensory processing. In this study, we examine the role of Cntnap2 in GI motility by characterizing Cntnap2's expression in the ENS and assessing GI function in Cntnap2 mutant mice. We find Cntnap2 expression predominately in enteric sensory neurons. We further assess in vivo and ex vivo GI motility in Cntnap2 mutants and show altered transit time and colonic motility patterns. The overall organization of the ENS appears undisturbed. Our results suggest that Cntnap2 plays a role in GI function and may provide a molecular link between ASD and GI dysfunction.
View details for DOI 10.3389/fnins.2023.1287057
View details for PubMedID 38027494
View details for PubMedCentralID PMC10665486
-
Comparison of wholemount dissection methods for neuronal subtype marker expression in the mouse myenteric plexus.
Neurogastroenterology and motility
2023: e14693
Abstract
BACKGROUND: Accurately reporting the identity and representation of enteric nervous system (ENS) neuronal subtypes along the length of the gastrointestinal (GI) tract is critical to advancing our understanding of ENS control of GI function. Reports of varying proportions of subtype marker expression have employed different dissection techniques to achieve wholemount muscularis preparations of myenteric plexus. In this study, we asked whether differences in GI dissection methods could introduce variability into the quantification of marker expression.METHODS: We compared three commonly used methods of ENS wholemount dissection: two flat-sheet preparations that differed in the order of microdissection and fixation and a third rod-mounted peeling technique. We also tested a reversed orientation variation of flat-sheet peeling, two step-by-step variations of the rod peeling technique, and whole-gut fixation as a tube. We assessed marker expression using immunohistochemistry, genetic reporter lines, confocal microscopy, and automated image analysis.KEY RESULTS AND CONCLUSIONS: We found no significant differences between the two flat-sheet preparation methods in the expression of calretinin or neuronal nitric oxide synthase (nNOS) as a proportion of total neurons in ileum myenteric plexus. However, the rod-mounted peeling method resulted in decreased proportion of neurons labeled for both calretinin and nNOS. This method also resulted in decreased transgenic reporter fluorescent protein (tdTomato) for substance P in distal colon and choline acetyltransferase (ChAT) in both ileum and distal colon. These results suggest that labeling among some markers, both native protein and transgenic fluorescent reporters, is decreased by the rod-mounted mechanical method of peeling. The step-by-step variations of this method point to mechanical manipulation of the tissue as the likely cause of decreased labeling. Our study thereby demonstrates a critical variability in wholemount muscularis dissection methods.
View details for DOI 10.1111/nmo.14693
View details for PubMedID 37882149
-
Spiral NeuroString: High-Density Soft Bioelectronic Fibers for Multimodal Sensing and Stimulation.
bioRxiv : the preprint server for biology
2023
Abstract
Bioelectronic fibers hold promise for both research and clinical applications due to their compactness, ease of implantation, and ability to incorporate various functionalities such as sensing and stimulation. However, existing devices suffer from bulkiness, rigidity, limited functionality, and low density of active components. These limitations stem from the difficulty to incorporate many components on one-dimensional (1D) fiber devices due to the incompatibility of conventional microfabrication methods (e.g., photolithography) with curved, thin and long fiber structures. Herein, we introduce a fabrication approach, ‶spiral transformation, to convert two-dimensional (2D) films containing microfabricated devices into 1D soft fibers. This approach allows for the creation of high density multimodal soft bioelectronic fibers, termed Spiral NeuroString (S-NeuroString), while enabling precise control over the longitudinal, angular, and radial positioning and distribution of the functional components. We show the utility of S-NeuroString for motility mapping, serotonin sensing, and tissue stimulation within the dynamic and soft gastrointestinal (GI) system, as well as for single-unit recordings in the brain. The described bioelectronic fibers hold great promises for next-generation multifunctional implantable electronics.
View details for DOI 10.1101/2023.10.02.560482
View details for PubMedID 37873341
-
Loss of ASD-Related Molecule Cntnap2 Affects Colonic Motility in Mice.
bioRxiv : the preprint server for biology
2023
Abstract
Gastrointestinal (GI) symptoms are highly prevalent among individuals with autism spectrum disorder (ASD), but the molecular link between ASD and GI dysfunction remains poorly understood. The enteric nervous system (ENS) is critical for normal GI motility and has been shown to be altered in mouse models of ASD and other neurological disorders. Contactin-associated protein-like 2 (Cntnap2) is an ASD-related synaptic cell-adhesion molecule important for sensory processing. In this study, we examine the role of Cntnap2 in GI motility by characterizing Cntnap2's expression in the ENS and assessing GI function in Cntnap2 mutant mice. We find Cntnap2 expression predominately in enteric sensory neurons. We further assess in-vivo and ex-vivo GI motility in Cntnap2 mutants and show altered transit time and colonic motility patterns. The overall organization of the ENS appears undisturbed. Our results suggest that Cntnap2 plays a role in GI function and may provide a molecular link between ASD and GI dysfunction.
View details for DOI 10.1101/2023.04.17.537221
View details for PubMedID 37131706
View details for PubMedCentralID PMC10153124
-
Spontaneous enteric nervous system activity precedes maturation of gastrointestinal motility.
bioRxiv : the preprint server for biology
2023
Abstract
Spontaneous neuronal network activity is essential in development of central and peripheral circuits, yet whether this is a feature of enteric nervous system development has yet to be established. Using ex vivo gastrointestinal (GI) motility assays with unbiased computational analyses, we identify a previously unknown pattern of spontaneous neurogenic GI motility. We further show that this motility is driven by cholinergic signaling, which may inform GI pharmacology for preterm patients.
View details for DOI 10.1101/2023.08.03.551847
View details for PubMedID 37577464
View details for PubMedCentralID PMC10418201
-
Anatomical and functional maturation of the mid-gestation human enteric nervous system.
Nature communications
2023; 14 (1): 2680
Abstract
Immature gastrointestinal motility impedes preterm infant survival. The enteric nervous system controls gastrointestinal motility, yet it is unknown when the human enteric nervous system matures enough to carry out vital functions. Here we demonstrate that the second trimester human fetal enteric nervous system takes on a striped organization akin to the embryonic mouse. Further, we perform ex vivo functional assays of human fetal tissue and find that human fetal gastrointestinal motility matures in a similar progression to embryonic mouse gastrointestinal motility. Together, this provides critical knowledge, which facilitates comparisons with common animal models to advance translational disease investigations and testing of pharmacological agents to enhance gastrointestinal motility in prematurity.
View details for DOI 10.1038/s41467-023-38293-z
View details for PubMedID 37160892
View details for PubMedCentralID PMC10170115
-
Single-cell transcriptomic landscape of the developing human spinal cord.
Nature neuroscience
2023
Abstract
Understanding spinal cord assembly is essential to elucidate how motor behavior is controlled and how disorders arise. The human spinal cord is exquisitely organized, and this complex organization contributes to the diversity and intricacy of motor behavior and sensory processing. But how this complexity arises at the cellular level in the human spinal cord remains unknown. Here we transcriptomically profiled the midgestation human spinal cord with single-cell resolution and discovered remarkable heterogeneity across and within cell types. Glia displayed diversity related to positional identity along the dorso-ventral and rostro-caudal axes, while astrocytes with specialized transcriptional programs mapped into white and gray matter subtypes. Motor neurons clustered at this stage into groups suggestive of alpha and gamma neurons. We also integrated our data with multiple existing datasets of the developing human spinal cord spanning 22 weeks of gestation to investigate the cell diversity over time. Together with mapping of disease-related genes, this transcriptomic mapping of the developing human spinal cord opens new avenues for interrogating the cellular basis of motor control in humans and guides human stem cell-based models of disease.
View details for DOI 10.1038/s41593-023-01311-w
View details for PubMedID 37095394
View details for PubMedCentralID 8353162
-
Single-cell multiome sequencing clarifies enteric glial diversity and identifies an intraganglionic population poised for neurogenesis.
Cell reports
2023; 42 (3): 112194
Abstract
The enteric nervous system (ENS) consists of glial cells (EGCs) and neurons derived from neural crest precursors. EGCs retain capacity for large-scale neurogenesis in culture, and in vivo lineage tracing has identified neurons derived from glial cells in response to inflammation. We thus hypothesize that EGCs possess a chromatin structure poised for neurogenesis. We use single-cell multiome sequencing to simultaneously assess transcription and chromatin accessibility in EGCs undergoing spontaneous neurogenesis in culture, as well as small intestine myenteric plexus EGCs. Cultured EGCs maintain open chromatin at genomic loci accessible in neurons, and neurogenesis from EGCs involves dynamic chromatin rearrangements with a net decrease in accessible chromatin. A subset of in vivo EGCs, highly enriched within the myenteric ganglia and that persist into adulthood, have a gene expression program and chromatin state consistent with neurogenic potential. These results clarify the mechanisms underlying EGC potential for neuronal fate transition.
View details for DOI 10.1016/j.celrep.2023.112194
View details for PubMedID 36857184
-
Regional cytoarchitecture of the adult and developing mouse enteric nervous system.
Current biology : CB
2022
Abstract
The organization and cellular composition of tissues are key determinants of their biological function. In the mammalian gastrointestinal (GI) tract, the enteric nervous system (ENS) intercalates between muscular and epithelial layers of the gut wall and can control GI function independent of central nervous system (CNS) input.1 As in the CNS, distinct regions of the GI tract are highly specialized and support diverse functions, yet the regional and spatial organization of the ENS remains poorly characterized.2 Cellular arrangements,3,4 circuit connectivity patterns,5,6 and diverse cell types7-9 are known to underpin ENS functional complexity and GI function, but enteric neurons are most typically described only as a uniform meshwork of interconnected ganglia. Here, we present a bird's eye view of the mouse ENS, describing its previously underappreciated cytoarchitecture and regional variation. We visually and computationally demonstrate that enteric neurons are organized in circumferential neuronal stripes. This organization emerges gradually during the perinatal period, with neuronal stripe formation in the small intestine (SI) preceding that in the colon. The width of neuronal stripes varies throughout the length of the GI tract, and distinct neuronal subtypes differentially populate specific regions of the GI tract, with stark contrasts between SI and colon as well as within subregions of each. This characterization provides a blueprint for future understanding of region-specific GI function and identifying ENS structural correlates of diverse GI disorders.
View details for DOI 10.1016/j.cub.2022.08.030
View details for PubMedID 36070775
-
Transcription factor gene Pea3 regulates erectile function during copulation in mice.
PloS one
2022; 17 (10): e0276069
Abstract
Male mice with homozygous loss of function mutations of the transcription factor gene Pea3 (Pea3 null) are infertile due to their inability to inseminate females, however the specific deficits in male sexual behaviors that drive this phenotype are unknown. Here, the copulatory behavior of male mice (Pea3 null and control) with hormonally primed ovariectomized females was monitored via high-speed and high-resolution digital videography to assess for differences in female-directed social behaviors, gross sexual behaviors (mounting, thrusting), and erectile and ejaculatory function. Pea3 null male mice exhibit greatly reduced erectile function, with 44% of males displaying no visible erections during copulation, and 0% achieving sustained erections. As such, Pea3 null males are incapable of intromission and copulatory plug deposition, despite displaying largely normal female-directed social behaviors, mounting behaviors, and ejaculatory grasping behavior. Additionally, the organization and timing of thrusting behaviors is impaired in Pea3 null males. Our results show that the transcription factor gene Pea3 regulates the ability to achieve and maintain erections during copulation in mice.
View details for DOI 10.1371/journal.pone.0276069
View details for PubMedID 36301850
-
Unraveling the complex genetics of neural tube defects: From biological models to human genomics and back.
Genesis (New York, N.Y. : 2000)
2021: e23459
Abstract
Neural tube defects (NTDs) are a classic example of preventable birth defects for which there is a proven-effective intervention, folic acid (FA); however, further methods of prevention remain unrealized. In the decades following implementation of FA nutritional fortification programs throughout at least 87 nations, it has become apparent that not all NTDs can be prevented by FA. In the United States, FA fortification only reduced NTD rates by 28-35% (Williams et al.,2015). As such, it is imperative that further work is performed to understand the risk factors associated with NTDs and their underlying mechanisms so that alternative prevention strategies can be developed. However, this is complicated by the sheer number of genes associated with neural tube development, the heterogeneity of observable phenotypes in human cases, the rareness of the disease, and the myriad of environmental factors associated with NTD risk. Given the complex genetic architecture underlying NTD pathology and the way in which that architecture interacts dynamically with environmental factors, further prevention initiatives will undoubtedly require precision medicine strategies that utilize the power of human genomics and modern tools for assessing genetic risk factors. Herein, we review recent advances in genomic strategies for discovering genetic variants associated with these defects, and new ways in which biological models, such as mice and cell culture-derived organoids, are leveraged to assess mechanistic functionality, the way these variants interact with other genetic or environmental factors, and their ultimate contribution to human NTD risk.
View details for DOI 10.1002/dvg.23459
View details for PubMedID 34713546
-
COUNTEN, an AI-Driven Tool for Rapid and Objective Structural Analyses of the Enteric Nervous System.
eNeuro
2021
Abstract
The enteric nervous system (ENS) consists of an interconnected meshwork of neurons and glia residing within the wall of the gastrointestinal (GI) tract. While healthy GI function is associated with healthy ENS structure, defined by the normal distribution of neurons within ganglia of the ENS, a comprehensive understanding of normal neuronal distribution and ganglionic organization in the ENS is lacking. Current methodologies for manual enumeration of neurons parse only limited tissue regions and are prone to error, subjective bias, and peer-to-peer discordance. There is accordingly a need for robust, and objective tools that can capture and quantify enteric neurons within multiple ganglia over large areas of tissue. Here, we report on the development of an AI-driven tool, COUNTEN (COUNTing Enteric Neurons), which is capable of accurately identifying and enumerating immunolabeled enteric neurons, and objectively clustering them into ganglia. We tested and found that COUNTEN matches trained humans in its accuracy while taking a fraction of the time to complete the analyses. Finally, we use COUNTEN's accuracy and speed to identify and cluster thousands of ileal myenteric neurons into hundreds of ganglia thus computing metrics that help define the normal structure of the ileal myenteric plexus. To facilitate reproducible, robust, and objective measures of ENS structure across mouse models, experiments, and institutions, COUNTEN is freely and openly available to all researchers.Significance StatementCOUNTEN (COUNTing Enteric Neurons) is the first open-source AI-driven tool that performs automated, rapid, and objective enumeration and clustering of murine enteric neurons.
View details for DOI 10.1523/ENEURO.0092-21.2021
View details for PubMedID 34266963
-
Proprioception revisited: where do we stand?
Current opinion in physiology
2021; 21: 23-28
Abstract
Originally referred to as 'muscle sense', the notion that skeletal muscle held a peripheral sensory function was first described early in the 19th century. Foundational experiments by Sherrington in the early 20th century definitively demonstrated that proprioceptors contained within skeletal muscle, tendons, and joints are innervated by sensory neurons and play an important role in the control of movement. In this review, we will highlight several recent advances in the ongoing effort to further define the molecular diversity underlying the proprioceptive sensorimotor system. Together, the work summarized here represents our current understanding of sensorimotor circuit formation during development and the mechanisms that regulate the integration of proprioceptive feedback into the spinal circuits that control locomotion in both normal and diseased states.
View details for DOI 10.1016/j.cophys.2021.02.003
View details for PubMedID 34222735
View details for PubMedCentralID PMC8244174
-
Single-cell transcriptomic analysis of the adult mouse spinal cord reveals molecular diversity of autonomic and skeletal motor neurons.
Nature neuroscience
2021
Abstract
The spinal cord is a fascinating structure that is responsible for coordinating movement in vertebrates. Spinal motor neurons control muscle activity by transmitting signals from the spinal cord to diverse peripheral targets. In this study, we profiled 43,890 single-nucleus transcriptomes from the adult mouse spinal cord using fluorescence-activated nuclei sorting to enrich for motor neuron nuclei. We identified 16 sympathetic motor neuron clusters, which are distinguishable by spatial localization and expression of neuromodulatory signaling genes. We found surprising skeletal motor neuron heterogeneity in the adult spinal cord, including transcriptional differences that correlate with electrophysiologically and spatially distinct motor pools. We also provide evidence for a novel transcriptional subpopulation of skeletal motor neuron (gamma*). Collectively, these data provide a single-cell transcriptional atlas ( http://spinalcordatlas.org ) for investigating the organizing molecular logic of adult motor neuron diversity, as well as the cellular and molecular basis of motor neuron function in health and disease.
View details for DOI 10.1038/s41593-020-00795-0
View details for PubMedID 33589834
-
Commissural axon guidance in the developing spinal cord: from Cajal to the present day.
Neural development
2019; 14 (1): 9
Abstract
During neuronal development, the formation of neural circuits requires developing axons to traverse a diverse cellular and molecular environment to establish synaptic contacts with the appropriate postsynaptic partners. Essential to this process is the ability of developing axons to navigate guidance molecules presented by specialized populations of cells. These cells partition the distance traveled by growing axons into shorter intervals by serving as intermediate targets, orchestrating the arrival and departure of axons by providing attractive and repulsive guidance cues. The floor plate in the central nervous system (CNS) is a critical intermediate target during neuronal development, required for the extension of commissural axons across the ventral midline. In this review, we begin by giving a historical overview of the ventral commissure and the evolutionary purpose of decussation. We then review the axon guidance studies that have revealed a diverse assortment of midline guidance cues, as well as genetic and molecular regulatory mechanisms required for coordinating the commissural axon response to these cues. Finally, we examine the contribution of dysfunctional axon guidance to neurological diseases.
View details for DOI 10.1186/s13064-019-0133-1
View details for PubMedID 31514748
-
Chandelier Cells Swipe Right for L1CAM
NEURON
2019; 102 (2): 267–70
View details for DOI 10.1016/j.neuron.2019.03.038
View details for Web of Science ID 000465169700002
-
Sensory and descending motor circuitry during development and injury.
Current opinion in neurobiology
2018; 53: 156–61
Abstract
Proprioceptive sensory input and descending supraspinal projections are two major inputs that feed into and influence spinal circuitry and locomotor behaviors. Here we review their influence on each other during development and after spinal cord injury. We highlight developmental mechanisms of circuit formation as they relate to the sensory-motor circuit and its reciprocal interactions with local spinal interneurons, as well as competitive interactions between proprioceptive and descending supraspinal inputs in the setting of spinal cord injury.
View details for PubMedID 30205323
-
A Role for Dystonia-Associated Genes in Spinal GABAergic Interneuron Circuitry.
Cell reports
2017; 21 (3): 666–78
Abstract
Spinal interneurons are critical modulators of motor circuit function. In the dorsal spinal cord, a set of interneurons called GABApre presynaptically inhibits proprioceptive sensory afferent terminals, thus negatively regulating sensory-motor signaling. Although deficits in presynaptic inhibition have been inferred in human motor diseases, including dystonia, it remains unclear whether GABApre circuit components are altered in these conditions. Here, we use developmental timing to show that GABApre neurons are a late Ptf1a-expressing subclass and localize to the intermediate spinal cord. Using a microarray screen to identify genes expressed in this intermediate population, we find the kelch-like family member Klhl14, implicated in dystonia through its direct binding with torsion-dystonia-related protein Tor1a. Furthermore, in Tor1a mutant mice in which Klhl14 and Tor1a binding is disrupted, formation of GABApre sensory afferent synapses is impaired. Our findings suggest a potential contribution of GABApre neurons to the deficits in presynaptic inhibition observed in dystonia.
View details for PubMedID 29045835
-
Satb2 Stations Neurons along Reflex Arcs
NEURON
2016; 91 (4): 711-713
Abstract
The nociceptive flexor withdrawal reflex has an august place in the history of neuroscience. In this issue of Neuron, Hilde et al. (2016) advance our understanding of this reflex by characterizing the molecular identity and circuit connectivity of component interneurons. They assess how a DNA-binding factor Satb2 controls cell position, molecular identity, pre-and postsynaptic targeting, and function of a population of inhibitory sensory relay interneurons that serve to integrate both proprioceptive and nociceptive afferent information.
View details for DOI 10.1016/j.neuron.2016.08.005
View details for Web of Science ID 000382396700001
View details for PubMedID 27537478
-
Sensory-Derived Glutamate Regulates Presynaptic Inhibitory Terminals in Mouse Spinal Cord
NEURON
2016; 90 (6): 1189-1202
Abstract
Circuit function in the CNS relies on the balanced interplay of excitatory and inhibitory synaptic signaling. How neuronal activity influences synaptic differentiation to maintain such balance remains unclear. In the mouse spinal cord, a population of GABAergic interneurons, GABApre, forms synapses with the terminals of proprioceptive sensory neurons and controls information transfer at sensory-motor connections through presynaptic inhibition. We show that reducing sensory glutamate release results in decreased expression of GABA-synthesizing enzymes GAD65 and GAD67 in GABApre terminals and decreased presynaptic inhibition. Glutamate directs GAD67 expression via the metabotropic glutamate receptor mGluR1β on GABApre terminals and regulates GAD65 expression via autocrine influence on sensory terminal BDNF. We demonstrate that dual retrograde signals from sensory terminals operate hierarchically to direct the molecular differentiation of GABApre terminals and the efficacy of presynaptic inhibition. These retrograde signals comprise a feedback mechanism by which excitatory sensory activity drives GABAergic inhibition to maintain circuit homeostasis.
View details for DOI 10.1016/j.neuron.2016.05.008
View details for PubMedID 27263971
-
Normal Molecular Specification and Neurodegenerative Disease-Like Death of Spinal Neurons Lacking the SNARE-Associated Synaptic Protein Munc18-1
JOURNAL OF NEUROSCIENCE
2016; 36 (2): 561-576
Abstract
The role of synaptic activity during early formation of neural circuits is a topic of some debate; genetic ablation of neurotransmitter release by deletion of the Munc18-1 gene provides an excellent model to answer the question of whether such activity is required for early circuit formation. Previous analysis of Munc18-1(-/-) mouse mutants documented their grossly normal nervous system, but its molecular differentiation has not been assessed. Munc18-1 deletion in mice also results in widespread neurodegeneration that remains poorly characterized. In this study, we demonstrate that the early stages of spinal motor circuit formation, including motor neuron specification, axon growth and pathfinding, and mRNA expression, are unaffected in Munc18-1(-/-) mice, demonstrating that synaptic activity is dispensable for early nervous system development. Furthermore, we show that the neurodegeneration caused by Munc18-1 loss is cell autonomous, consistent with apparently normal expression of several neurotrophic factors and normal GDNF signaling. Consistent with cell-autonomous degeneration, we demonstrate defects in the trafficking of the synaptic proteins Syntaxin1a and PSD-95 and the TrkB and DCC receptors in Munc18-1(-/-) neurons; these defects do not appear to cause ER stress, suggesting other mechanisms for degeneration. Finally, we demonstrate pathological similarities to Alzheimer's disease, such as altered Tau phosphorylation, neurofibrillary tangles, and accumulation of insoluble protein plaques. Together, our results shed new light upon the neurodegeneration observed in Munc18-1(-/-) mice and argue that this phenomenon shares parallels with neurodegenerative diseases.In this work, we demonstrate the absence of a requirement for regulated neurotransmitter release in the assembly of early neuronal circuits by assaying transcriptional identity, axon growth and guidance, and mRNA expression in Munc18-1-null mice. Furthermore, we characterize the neurodegeneration observed in Munc18-1 mutants and demonstrate that this cell-autonomous process does not appear to be a result of defects in growth factor signaling or ER stress caused by protein trafficking defects. However, we find the presence of various pathological hallmarks of Alzheimer's disease that suggest parallels between the degeneration in these mutants and neurodegenerative conditions.
View details for DOI 10.1523/JNEUROSCI.1964-15.2016
View details for Web of Science ID 000368352600027
View details for PubMedID 26758845
-
Sensory and spinal inhibitory dorsal midline crossing is independent of Robo3
FRONTIERS IN NEURAL CIRCUITS
2015; 9
Abstract
Commissural neurons project across the midline at all levels of the central nervous system (CNS), providing bilateral communication critical for the coordination of motor activity and sensory perception. Midline crossing at the spinal ventral midline has been extensively studied and has revealed that multiple developmental lineages contribute to this commissural neuron population. Ventral midline crossing occurs in a manner dependent on Robo3 regulation of Robo/Slit signaling and the ventral commissure is absent in the spinal cord and hindbrain of Robo3 mutants. Midline crossing in the spinal cord is not limited to the ventral midline, however. While prior anatomical studies provide evidence that commissural axons also cross the midline dorsally, little is known of the genetic and molecular properties of dorsally-crossing neurons or of the mechanisms that regulate dorsal midline crossing. In this study, we describe a commissural neuron population that crosses the spinal dorsal midline during the last quarter of embryogenesis in discrete fiber bundles present throughout the rostrocaudal extent of the spinal cord. Using immunohistochemistry, neurotracing, and mouse genetics, we show that this commissural neuron population includes spinal inhibitory neurons and sensory nociceptors. While the floor plate and roof plate are dispensable for dorsal midline crossing, we show that this population depends on Robo/Slit signaling yet crosses the dorsal midline in a Robo3-independent manner. The dorsally-crossing commissural neuron population we describe suggests a substrate circuitry for pain processing in the dorsal spinal cord.
View details for DOI 10.3389/fncir.2015.00036
View details for Web of Science ID 000359749600001
View details for PubMedID 26257608
-
Misexpression of Ptf1a in Cortical Pyramidal Cells In Vivo Promotes an Inhibitory Peptidergic Identity
JOURNAL OF NEUROSCIENCE
2015; 35 (15): 6028-6037
Abstract
The intracellular transcriptional milieu wields considerable influence over the induction of neuronal identity. The transcription factor Ptf1a has been proposed to act as an identity "switch" between developmentally related precursors in the spinal cord (Glasgow et al., 2005; Huang et al., 2008), retina (Fujitani et al., 2006; Dullin et al., 2007; Nakhai et al., 2007; Lelièvre et al., 2011), and cerebellum (Hoshino et al., 2005; Pascual et al., 2007; Yamada et al., 2014), where it promotes an inhibitory over an excitatory neuronal identity. In this study, we investigate the potency of Ptf1a to cell autonomously confer a specific neuronal identity outside of its endogenous environment, using mouse in utero electroporation and a conditional genetic strategy to misexpress Ptf1a exclusively in developing cortical pyramidal cells. Transcriptome profiling of Ptf1a-misexpressing cells using RNA-seq reveals that Ptf1a significantly alters pyramidal cell gene expression, upregulating numerous Ptf1a-dependent inhibitory interneuron markers and ultimately generating a gene expression profile that resembles the transcriptomes of both Ptf1a-expressing spinal interneurons and endogenous cortical interneurons. Using RNA-seq and in situ hybridization analyses, we also show that Ptf1a induces expression of the peptidergic neurotransmitter nociceptin, while minimally affecting the expression of genes linked to other neurotransmitter systems. Moreover, Ptf1a alters neuronal morphology, inducing the radial redistribution and branching of neurites in cortical pyramidal cells. Thus Ptf1a is sufficient, even in a dramatically different neuronal precursor, to cell autonomously promote characteristics of an inhibitory peptidergic identity, providing the first example of a single transcription factor that can direct an inhibitory peptidergic fate.
View details for DOI 10.1523/JNEUROSCI.3821-14.2015
View details for PubMedID 25878276
-
From induction to conduction: how intrinsic transcriptional priming of extrinsic neuronal connectivity shapes neuronal identity
OPEN BIOLOGY
2014; 4 (10)
Abstract
Every behaviour of an organism relies on an intricate and vastly diverse network of neurons whose identity and connectivity must be specified with extreme precision during development. Intrinsically, specification of neuronal identity depends heavily on the expression of powerful transcription factors that direct numerous features of neuronal identity, including especially properties of neuronal connectivity, such as dendritic morphology, axonal targeting or synaptic specificity, ultimately priming the neuron for incorporation into emerging circuitry. As the neuron's early connectivity is established, extrinsic signals from its pre- and postsynaptic partners feedback on the neuron to further refine its unique characteristics. As a result, disruption of one component of the circuitry during development can have vital consequences for the proper identity specification of its synaptic partners. Recent studies have begun to harness the power of various transcription factors that control neuronal cell fate, including those that specify a neuron's subtype-specific identity, seeking insight for future therapeutic strategies that aim to reconstitute damaged circuitry through neuronal reprogramming.
View details for DOI 10.1098/rsob.140144
View details for Web of Science ID 000347899600007
View details for PubMedID 25297387
-
Neuronal Ig/Caspr Recognition Promotes the Formation of Axoaxonic Synapses in Mouse Spinal Cord
NEURON
2014; 81 (1): 120-129
Abstract
Inhibitory microcircuits are wired with a precision that underlies their complex regulatory roles in neural information processing. In the spinal cord, one specialized class of GABAergic interneurons (GABApre) mediates presynaptic inhibitory control of sensory-motor synapses. The synaptic targeting of these GABAergic neurons exhibits an absolute dependence on proprioceptive sensory terminals, yet the molecular underpinnings of this specialized axoaxonic organization remain unclear. Here, we show that sensory expression of an NB2 (Contactin5)/Caspr4 coreceptor complex, together with spinal interneuron expression of NrCAM/CHL1, directs the high-density accumulation of GABAergic boutons on sensory terminals. Moreover, genetic elimination of NB2 results in a disproportionate stripping of inhibitory boutons from high-density GABApre-sensory synapses, suggesting that the preterminal axons of GABApre neurons compete for access to individual sensory terminals. Our findings define a recognition complex that contributes to the assembly and organization of a specialized GABAergic microcircuit.
View details for DOI 10.1016/j.neuron.2013.10.060
View details for Web of Science ID 000329559000013
View details for PubMedID 24411736
-
Corticospinal tract insult alters GABAergic circuitry in the mammalian spinal cord
FRONTIERS IN NEURAL CIRCUITS
2013; 7
Abstract
During perinatal development, corticospinal tract (CST) projections into the spinal cord help refine spinal circuitry. Although the normal developmental processes that are controlled by the arrival of corticospinal input are becoming clear, little is known about how perinatal cortical damage impacts specific aspects of spinal circuit development, particularly the inhibitory microcircuitry that regulates spinal reflex circuits. In this study, we sought to determine how ischemic cortical damage impacts the synaptic attributes of a well-characterized population of inhibitory, GABAergic interneurons, called GABApre neurons, which modulates the efficiency of proprioceptive sensory terminals in the sensorimotor reflex circuit. We found that putative GABApre interneurons receive CST input and, using an established mouse model of perinatal stroke, that cortical ischemic injury results in a reduction of CST density within the intermediate region of the spinal cord, where these interneurons reside. Importantly, CST alterations were restricted to the side contralateral to the injury. Within the synaptic terminals of the GABApre interneurons, we observed a dramatic upregulation of the 65-isoform of the GABA synthetic enzyme glutamic acid decarboxylase (GAD65). In accordance with the CST density reduction, GAD65 was elevated on the side of the spinal cord contralateral to cortical injury. This effect was not seen for other GABApre synaptic markers or in animals that received sham surgery. Our data reveal a novel effect of perinatal stroke that involves severe deficits in the architecture of a descending spinal pathway, which in turn appear to promote molecular alterations in a specific spinal GABAergic circuit.
View details for DOI 10.3389/fncir.2013.00150
View details for Web of Science ID 000324807700001
View details for PubMedID 24093008
-
Wnt7A identifies embryonic ?-motor neurons and reveals early postnatal dependence of ?-motor neurons on a muscle spindle-derived signal.
journal of neuroscience
2012; 32 (25): 8725-8731
Abstract
Motor pools comprise a heterogeneous population of motor neurons that innervate distinct intramuscular targets. While the organization of motor neurons into motor pools has been well described, the time course and mechanism of motor pool diversification into functionally distinct classes remains unclear. γ-Motor neurons (γ-MNs) and α-motor neurons (α-MNs) differ in size, molecular identity, synaptic input and peripheral target. While α-MNs innervate extrafusal skeletal muscle fibers to mediate muscle contraction, γ-MNs innervate intrafusal fibers of the muscle spindle, and regulate sensitivity of the muscle spindle in response to stretch. In this study, we find that the secreted signaling molecule Wnt7a is selectively expressed in γ-MNs in the mouse spinal cord by embryonic day 17.5 and continues to molecularly distinguish γ-from α-MNs into the third postnatal week. Our data demonstrate that Wnt7a is the earliest known γ-MN marker, supporting a model of developmental divergence between α- and γ-MNs at embryonic stages. Furthermore, using Wnt7a expression as an early marker of γ-MN identity, we demonstrate a previously unknown dependence of γ-MNs on a muscle spindle-derived, GDNF-independent signal during the first postnatal week.
View details for DOI 10.1523/JNEUROSCI.1160-12.2012
View details for PubMedID 22723712
-
Stringent Specificity in the Construction of a GABAergic Presynaptic Inhibitory Circuit
CELL
2009; 139 (1): 161-174
Abstract
GABAergic interneurons are key elements in neural coding, but the mechanisms that assemble inhibitory circuits remain unclear. In the spinal cord, the transfer of sensory signals to motor neurons is filtered by GABAergic interneurons that act presynaptically to inhibit sensory transmitter release and postsynaptically to inhibit motor neuron excitability. We show here that the connectivity and synaptic differentiation of GABAergic interneurons that mediate presynaptic inhibition is directed by their sensory targets. In the absence of sensory terminals these GABAergic neurons shun other available targets, fail to undergo presynaptic differentiation, and withdraw axons from the ventral spinal cord. A sensory-specific source of brain derived neurotrophic factor induces synaptic expression of the GABA synthetic enzyme GAD65--a defining biochemical feature of this set of interneurons. The organization of a GABAergic circuit that mediates presynaptic inhibition in the mammalian CNS is therefore controlled by a stringent program of sensory recognition and signaling.
View details for DOI 10.1016/j.cell.2009.08.027
View details for Web of Science ID 000270388600024
View details for PubMedID 19804761
-
Gamma and alpha motor neurons distinguished by expression of transcription factor Err3
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
2009; 106 (32): 13588-13593
Abstract
Spinal motor neurons are specified to innervate different muscle targets through combinatorial programs of transcription factor expression. Whether transcriptional programs also establish finer aspects of motor neuron subtype identity, notably the prominent functional distinction between alpha and gamma motor neurons, remains unclear. In this study, we identify DNA binding proteins with complementary expression profiles in alpha and gamma motor neurons, providing evidence for molecular distinctions in these two motor neuron subtypes. The transcription factor Err3 is expressed at high levels in gamma but not alpha motor neurons, whereas the neuronal DNA binding protein NeuN marks alpha but not gamma motor neurons. Signals from muscle spindles are needed to support the differentiation of Err3(on)/NeuN(off) presumptive gamma motor neurons, whereas direct proprioceptive sensory input to a motor neuron pool is apparently dispensable. Together, these findings provide evidence that transcriptional programs define functionally distinct motor neuron subpopulations, even within anatomically defined motor pools.
View details for DOI 10.1073/pnas.0906809106
View details for Web of Science ID 000268877300079
View details for PubMedID 19651609
-
Conditional rhythmicity of ventral spinal interneurons defined by expression of the Hb9 homeodomain protein
JOURNAL OF NEUROSCIENCE
2005; 25 (24): 5710-5719
Abstract
The properties of mammalian spinal interneurons that underlie rhythmic locomotor networks remain poorly described. Using postnatal transgenic mice in which expression of green fluorescent protein is driven by the promoter for the homeodomain transcription factor Hb9, as well as Hb9-lacZ knock-in mice, we describe a novel population of glutamatergic interneurons located adjacent to the ventral commissure from cervical to midlumbar spinal cord levels. Hb9+ interneurons exhibit strong postinhibitory rebound and demonstrate pronounced membrane potential oscillations in response to chemical stimuli that induce locomotor activity. These data provide a molecular and physiological delineation of a small population of ventral spinal interneurons that exhibit homogeneous electrophysiological features, the properties of which suggest that they are candidate locomotor rhythm-generating interneurons.
View details for DOI 10.1523/JNEUROSCI.0274-05.2005
View details for Web of Science ID 000229815700006
View details for PubMedID 15958737
-
Polar transport in the Drosophilia oocyte requires Dynein and Kinesin I cooperation
CURRENT BIOLOGY
2002; 12 (23): 1971-1981
Abstract
The cytoskeleton and associated motors play an important role in the establishment of intracellular polarity. Microtubule-based transport is required in many cell types for the asymmetric localization of mRNAs and organelles. A striking example is the Drosophila oocyte, where microtubule-dependent processes govern the asymmetric positioning of the nucleus and the localization to distinct cortical domains of mRNAs that function as cytoplasmic determinants. A conserved machinery for mRNA localization and nuclear positioning involving cytoplasmic Dynein has been postulated; however, the precise role of plus- and minus end-directed microtubule-based transport in axis formation is not yet understood.Here, we show that mRNA localization and nuclear positioning at mid-oogenesis depend on two motor proteins, cytoplasmic Dynein and Kinesin I. Both of these microtubule motors cooperate in the polar transport of bicoid and gurken mRNAs to their respective cortical domains. In contrast, Kinesin I-mediated transport of oskar to the posterior pole appears to be independent of Dynein. Beside their roles in RNA transport, both motors are involved in nuclear positioning and in exocytosis of Gurken protein. Dynein-Dynactin complexes accumulate at two sites within the oocyte: around the nucleus in a microtubule-independent manner and at the posterior pole through Kinesin-mediated transport.The microtubule motors cytoplasmic Dynein and Kinesin I, by driving transport to opposing microtubule ends, function in concert to establish intracellular polarity within the Drosophila oocyte. Furthermore, Kinesin-dependent localization of Dynein suggests that both motors are components of the same complex and therefore might cooperate in recycling each other to the opposite microtubule pole.
View details for Web of Science ID 000179954200014
View details for PubMedID 12477385
-
Planar polarity and actin dynamics in the epidermis of Drosophila
NATURE CELL BIOLOGY
2002; 4 (12): 937-944
Abstract
Dorsal closure is a morphogenetic process involving the coordinated convergence of two epithelial sheets to enclose the Drosophila melanogaster embryo. Specialized populations of cells at the edges of each epithelial sheet, the dorsal-most epidermal cells, emit actin-based processes that are essential for the proper enclosure of the embryo. Here we show that actin dynamics at the leading edge is preceded by a planar polarization of the dorsal-most epidermal cells associated with a reorganization of the cytoskeleton. An important consequence of this planar polarization is the formation of actin-nucleating centres at the leading edge, which are important in the dynamics of actin. We show that Wingless (Wg) signalling and Jun amino-terminal kinase (JNK) signalling have overlapping but different roles in these events.
View details for DOI 10.1038/ncb882
View details for Web of Science ID 000179571800013
View details for PubMedID 12447392
-
A new dawn for an old connection: development meets the cell
TRENDS IN CELL BIOLOGY
2002; 12 (7): 316-320
Abstract
Increasingly, the attention of developmental biologists is being drawn from genes and their products towards cells, from processes mediated by linear pathways in which one protein regulates the activity of another to events that rely on multimolecular machines. Some components of these machines are partially redundant, and some have essential functions in general cellular processes. These observations invite a reassessment of the uses of genetics for analyzing the cell biology of development. In addition, the increasing ability to image live cells and their proteins reveals a complex and interesting world, forcing us to deal with new variables and objects of study. Here, we provide a glimpse of these changes and the challenges they raise.
View details for Web of Science ID 000176365200007
View details for PubMedID 12185848
-
Asymmetric cell division: microtubule dynamics and spindle asymmetry
JOURNAL OF CELL SCIENCE
2002; 115 (11): 2257-2264
Abstract
Asymmetric cell division can produce daughter cells with different developmental fates and is often accompanied by a difference in cell size. A number of recent genetic and in vivo imaging studies in Drosophila and Caenorhabditis elegans have begun to elucidate the mechanisms underlying the rearrangements of the cytoskeleton that result in eccentrically positioned cleavage planes. As a result, we are starting to gain an insight into the complex nature of the signals controlling cytoskeletal dynamics in the dividing cell. In this commentary we discuss recent findings on how the mitotic spindle is positioned and on cleavage site induction and place them in the context of cell size asymmetry in different model organisms.
View details for Web of Science ID 000176450900001
View details for PubMedID 12006610
-
Frizzled regulates localization of cell-fate determinants and mitotic spindle rotation during asymmetric cell division
NATURE CELL BIOLOGY
2001; 3 (1): 50-57
Abstract
Cell-fate diversity is generated in part by the unequal segregation of cell-fate determinants during asymmetric cell divisions. In the Drosophila pupa, the pI sense organ precursor cell is polarized along the anterior-posterior axis of the fly and divides asymmetrically to generate a posterior pIIa cell and an anterior pIIb cell. The anterior pIIb cell specifically inherits the determinant Numb and the adaptor protein Partner of Numb (Pon). By labelling both the Pon crescent and the microtubules in living pupae, we show that determinants localize at the anterior cortex before mitotic-spindle formation, and that the spindle forms with random orientation and rotates to line up with the Pon crescent. By imaging living frizzled (fz) mutant pupae we show that Fz regulates the orientation of the polarity axis of pI, the initiation of spindle rotation and the unequal partitioning of determinants. We conclude that Fz participates in establishing the polarity of pI.
View details for Web of Science ID 000166146400020
View details for PubMedID 11146626
-
Rotation and asymmetry of the mitotic spindle direct asymmetric cell division in the developing central nervous system
NATURE CELL BIOLOGY
2000; 2 (1): 7-12
Abstract
The asymmetric segregation of cell-fate determinants and the generation of daughter cells of different sizes rely on the correct orientation and position of the mitotic spindle. In the Drosophila embryo, the determinant Prospero is localized basally and is segregated equally to daughters of similar cell size during epidermal cell division. In contrast, during neuroblast division Prospero is segregated asymmetrically to the smaller daughter cell. This simple switch between symmetric and asymmetric segregation is achieved by changing the orientation of cell division: neural cells divide in a plane perpendicular to that of epidermoblast division. Here, by labelling mitotic spindles in living Drosophila embryos, we show that neuroblast spindles are initially formed in the same axis as epidermal cells, but rotate before cell division. We find that daughter cells of different sizes arise because the spindle itself becomes asymmetric at anaphase: apical microtubules elongate, basal microtubules shorten, and the midbody moves basally until it is positioned asymmetrically between the two spindle poles. This observation contradicts the widely held hypothesis that the cleavage furrow is always placed midway between the two centrosomes.
View details for Web of Science ID 000084843600012
View details for PubMedID 10620800