Stanford Advisors

All Publications

  • Sustained delivery approaches to improving adaptive immune responses. Advanced drug delivery reviews Ou, B. S., Saouaf, O. M., Baillet, J., Appel, E. A. 2022: 114401


    The immune system is one of the most important, complex biological networks regulating and protecting human health. Its precise modulation can prevent deadly infections and fight cancer. Accordingly, prophylactic vaccines and cancer immunotherapies are some of the most powerful technologies to protect against potential dangers through training of the immune system. Upon immunization, activation and maturation of B and T cells of the adaptive immune system are necessary for development of proper humoral and cellular protection. Yet, the exquisite organization of the immune system requires spatiotemporal control over the exposure of immunomodulatory signals. For example, while the human immune system has evolved to develop immunity to natural pathogenic infections that often last for weeks, current prophylactic vaccination technologies only expose the immune system to immunomodulatory signals for hours to days. It has become clear that leveraging sustained release technologies to prolong immunogen and adjuvant exposure can increase the potency, durability, and quality of adaptive immune responses. Over the past several years, tremendous breakthroughs have been made in the design of novel biomaterials such as nanoparticles, microparticles, hydrogels, and microneedles that can precisely control and the presentation of immunomodulatory signals to the immune system. In this review, we discuss relevant sustained release strategies and their corresponding benefits to cellular and humoral responses.

    View details for DOI 10.1016/j.addr.2022.114401

    View details for PubMedID 35750115

  • Consistent tumorigenesis with self-assembled hydrogels enables high-powered murine cancer studies. Communications biology Grosskopf, A. K., Correa, S., Baillet, J., Maikawa, C. L., Gale, E. C., Brown, R. A., Appel, E. A. 2021; 4 (1): 985


    Preclinical cancer research is heavily dependent on allograft and xenograft models, but current approaches to tumor inoculation yield inconsistent tumor formation and growth, ultimately wasting valuable resources (e.g., animals, time, and money) and limiting experimental progress. Here we demonstrate a method for tumor inoculation using self-assembled hydrogels to reliably generate tumors with low variance in growth. The observed reduction in model variance enables smaller animal cohorts, improved effect observation and higher powered studies.

    View details for DOI 10.1038/s42003-021-02500-8

    View details for PubMedID 34413455