All Publications


  • DLL3 regulates Notch signaling in small cell lung cancer. iScience Kim, J. W., Ko, J. H., Sage, J. 2022; 25 (12): 105603

    Abstract

    Tumor heterogeneity plays a critical role in tumor development and response to treatment. In small-cell lung cancer (SCLC), intratumoral heterogeneity is driven in part by the Notch signaling pathway, which reprograms neuroendocrine cancer cells to a less/non-neuroendocrine state. Here we investigated the atypical Notch ligand DLL3 as a biomarker of the neuroendocrine state and a regulator of cell-cell interactions in SCLC. We first built a mathematical model to predict the impact of DLL3 expression on SCLC cell populations. We next tested this model using a single-chain variable fragment (scFv) to track DLL3 expression in vivo and a new mouse model of SCLC with inducible expression of DLL3 in SCLC tumors. We found that high levels of DLL3 promote the expansion of a SCLC cell population with lower expression levels of both neuroendocrine and non-neuroendocrine markers. This work may influence how DLL3-targeting therapies are used in SCLC patients.

    View details for DOI 10.1016/j.isci.2022.105603

    View details for PubMedID 36483011

    View details for PubMedCentralID PMC9722452

  • Mechanisms of small cell lung cancer metastasis. EMBO molecular medicine Ko, J., Winslow, M. M., Sage, J. 2020: e13122

    Abstract

    Metastasis is a major cause of morbidity and mortality in cancer patients. However, the molecular and cellular mechanisms underlying the ability of cancer cells to metastasize remain relatively poorly understood. Among all solid tumors, small cell lung cancer (SCLC) has remarkable metastatic proclivity, with a majority of patients diagnosed with metastatic disease. Our understanding of SCLC metastasis has been hampered for many years by the paucity of material from primary tumors and metastases, as well as the lack of faithful pre-clinical models. Here, we review recent advances that are helping circumvent these limitations. These advances include methods that employ circulating tumor cells from the blood of SCLC patients and the development of diverse genetically engineered mouse models of metastatic SCLC. New insights into the cellular mechanisms of SCLC metastasis include observations of cell fate changes associated with increased metastatic ability. Ongoing studies on cell migration and organ tropism promise to expand our understanding of SCLC metastasis. Ultimately, a better molecular understanding of metastatic phenotypes may be translated into new therapeutic options to limit metastatic spread and treat metastatic SCLC.

    View details for DOI 10.15252/emmm.202013122

    View details for PubMedID 33296145

  • Unbiased Proteomic Profiling Uncovers a Targetable GNAS/PKA/PP2A Axis in Small Cell Lung Cancer Stem Cells. Cancer cell Coles, G. L., Cristea, S. n., Webber, J. T., Levin, R. S., Moss, S. M., He, A. n., Sangodkar, J. n., Hwang, Y. C., Arand, J. n., Drainas, A. P., Mooney, N. A., Demeter, J. n., Spradlin, J. N., Mauch, B. n., Le, V. n., Shue, Y. T., Ko, J. H., Lee, M. C., Kong, C. n., Nomura, D. K., Ohlmeyer, M. n., Swaney, D. L., Krogan, N. J., Jackson, P. K., Narla, G. n., Gordan, J. D., Shokat, K. M., Sage, J. n. 2020

    Abstract

    Using unbiased kinase profiling, we identified protein kinase A (PKA) as an active kinase in small cell lung cancer (SCLC). Inhibition of PKA activity genetically, or pharmacologically by activation of the PP2A phosphatase, suppresses SCLC expansion in culture and in vivo. Conversely, GNAS (G-protein α subunit), a PKA activator that is genetically activated in a small subset of human SCLC, promotes SCLC development. Phosphoproteomic analyses identified many PKA substrates and mechanisms of action. In particular, PKA activity is required for the propagation of SCLC stem cells in transplantation studies. Broad proteomic analysis of recalcitrant cancers has the potential to uncover targetable signaling networks, such as the GNAS/PKA/PP2A axis in SCLC.

    View details for DOI 10.1016/j.ccell.2020.05.003

    View details for PubMedID 32531271