All Publications

  • Hybrid Core-Shell Nanofibrous Scaffolds/Stents Deliver Angiotensin II Receptor Blocker to Treat Diabetic Artery Disease ACS APPLIED POLYMER MATERIALS Lee, C., Hsieh, M., Roth, J., Fu, X., Lu, C., Hung, K., Kuo, C., Liu, S. 2022; 4 (6): 4199-4207
  • Tuning Polymer Hydrophilicity to Regulate Gel Mechanics and Encapsulated Cell Morphology. Advanced healthcare materials Navarro, R. S., Huang, M. S., Roth, J. G., Hubka, K. M., Long, C. M., Enejder, A., Heilshorn, S. C. 2022: e2200011


    Mechanically tunable hydrogels are attractive platforms for three-dimensional cell culture, as hydrogel stiffness plays an important role in cell behavior. Traditionally, hydrogel stiffness has been controlled through altering either the polymer concentration or the stoichiometry between crosslinker reactive groups. Here, we present an alternative strategy based upon tuning the hydrophilicity of an elastin-like protein (ELP). ELPs undergo a phase transition that leads to protein aggregation at increasing temperatures. We hypothesize that increasing this transition temperature through bioconjugation with azide-containing molecules of increasing hydrophilicity will allow direct control of the resulting gel stiffness by making the crosslinking groups more accessible. These azide-modified ELPs are crosslinked into hydrogels with bicyclononyne-modified hyaluronic acid (HA-BCN) using bioorthogonal, click chemistry, resulting in hydrogels with tunable storage moduli (100-1000Pa). Human mesenchymal stromal cells, human umbilical vein endothelial cells, and human neural progenitor cells are all observed to alter their cell morphology when encapsulated within hydrogels of varying stiffness. Taken together, we demonstrate the use of protein hydrophilicity as a lever to tune hydrogel mechanical properties. These hydrogels have tunable moduli over a stiffness range relevant to soft tissues, support the viability of encapsulated cells, and modify cell spreading as a consequence of gel stiffness. This article is protected by copyright. All rights reserved.

    View details for DOI 10.1002/adhm.202200011

    View details for PubMedID 35373510

  • Telmisartan Loaded Nanofibers Enhance Re-Endothelialization and Inhibit Neointimal Hyperplasia. Pharmaceutics Lee, C., Liu, K., Roth, J. G., Hung, K., Liu, Y., Wang, S., Kuo, C., Liu, S. 2021; 13 (11)


    Stent implantation impairs local endothelial function and may be associated with subsequent adverse cardiovascular events. Telmisartan, an angiotensin II receptor blocker that has unique peroxisome proliferator-activated-receptor-gamma-mediated effects on cardiovascular disease, has been shown to enhance endothelial function and limit neointimal hyperplasia. This study utilized hybrid biodegradable/stent nanofibers to facilitate sustained and local delivery of telmisartan to injured arterial vessels. Telmisartan and poly(d,l)-lactide-co-glycolide (PLGA) (75:25) were dissolved in hexafluoroisopropyl alcohol and electrospun into biodegradable nanofibrous tubes which were coated onto metal stents. By releasing 20% of the loaded telmisartan in 30 days, these hybrid biodegradable/stent telmisartan-loaded nanofibers increased the migration of endothelial progenitor cells in vitro, promoted endothelialization, and reduced intimal hyperplasia. As such, this work provides insights into the use of PLGA nanofibers for treating patients with an increased risk of stent restenosis.

    View details for DOI 10.3390/pharmaceutics13111756

    View details for PubMedID 34834171

  • Advancing models of neural development with biomaterials. Nature reviews. Neuroscience Roth, J. G., Huang, M. S., Li, T. L., Feig, V. R., Jiang, Y., Cui, B., Greely, H. T., Bao, Z., Pasca, S. P., Heilshorn, S. C. 2021


    Human pluripotent stem cells have emerged as a promising in vitro model system for studying the brain. Two-dimensional and three-dimensional cell culture paradigms have provided valuable insights into the pathogenesis of neuropsychiatric disorders, but they remain limited in their capacity to model certain features of human neural development. Specifically, current models do not efficiently incorporate extracellular matrix-derived biochemical and biophysical cues, facilitate multicellular spatio-temporal patterning, or achieve advanced functional maturation. Engineered biomaterials have the capacity to create increasingly biomimetic neural microenvironments, yet further refinement is needed before these approaches are widely implemented. This Review therefore highlights how continued progression and increased integration of engineered biomaterials may be well poised to address intractable challenges in recapitulating human neural development.

    View details for DOI 10.1038/s41583-021-00496-y

    View details for PubMedID 34376834

  • 3D Bioprinting using UNIversal Orthogonal Network (UNION) Bioinks. Advanced functional materials Hull, S. M., Lindsay, C. D., Brunel, L. G., Shiwarski, D. J., Tashman, J. W., Roth, J. G., Myung, D., Feinberg, A. W., Heilshorn, S. C. 2021; 31 (7)


    Three-dimensional (3D) bioprinting is a promising technology to produce tissue-like structures, but a lack of diversity in bioinks is a major limitation. Ideally each cell type would be printed in its own customizable bioink. To fulfill this need for a universally applicable bioink strategy, we developed a versatile, bioorthogonal bioink crosslinking mechanism that is cell compatible and works with a range of polymers. We term this family of materials UNIversal, Orthogonal Network (UNION) bioinks. As demonstration of UNION bioink versatility, gelatin, hyaluronic acid (HA), recombinant elastin-like protein (ELP), and polyethylene glycol (PEG) were each used as backbone polymers to create inks with storage moduli spanning 200 to 10,000 Pa. Because UNION bioinks are crosslinked by a common chemistry, multiple materials can be printed together to form a unified, cohesive structure. This approach is compatible with any support bath that enables diffusion of UNION crosslinkers. Both matrix-adherent human corneal mesenchymal stromal cells and non-matrix-adherent human induced pluripotent stem cell-derived neural progenitor spheroids were printed with UNION bioinks. The cells retained high viability and expressed characteristic phenotypic markers after printing. Thus, UNION bioinks are a versatile strategy to expand the toolkit of customizable materials available for 3D bioprinting.

    View details for DOI 10.1002/adfm.202007983

    View details for PubMedID 33613150

    View details for PubMedCentralID PMC7888563

  • Microrheology reveals simultaneous cell-mediated matrix stiffening and fluidization that underlie breast cancer invasion. Science advances Krajina, B. A., LeSavage, B. L., Roth, J. G., Zhu, A. W., Cai, P. C., Spakowitz, A. J., Heilshorn, S. C. 2021; 7 (8)


    Living tissues embody a unique class of hybrid materials in which active and thermal forces are inextricably linked. Mechanical characterization of tissues demands descriptors that respect this hybrid nature. In this work, we develop a microrheology-based force spectrum analysis (FSA) technique to dissect the active and passive fluctuations of the extracellular matrix (ECM) in three-dimensional (3D) cell culture models. In two different stromal models and a 3D breast cancer spheroid model, our FSA reveals emergent hybrid dynamics that involve both high-frequency stress stiffening and low-frequency fluidization of the ECM. We show that this is a general consequence of nonlinear coupling between active forces and the frequency-dependent viscoelasticity of stress-stiffening networks. In 3D breast cancer spheroids, this dual active stiffening and fluidization is tightly connected with invasion. Our results suggest a mechanism whereby breast cancer cells reconcile the seemingly contradictory requirements for both tension and malleability in the ECM during invasion.

    View details for DOI 10.1126/sciadv.abe1969

    View details for PubMedID 33597244

  • 3D Bioprinting using UNIversal Orthogonal Network (UNION) Bioinks ADVANCED FUNCTIONAL MATERIALS Hull, S. M., Lindsay, C. D., Brunel, L. G., Shiwarski, D. J., Tashman, J. W., Roth, J. G., Myung, D., Feinberg, A. W., Heilshorn, S. C. 2020
  • 16p11.2 microdeletion imparts transcriptional alterations in human iPSC-derived models of early neural development. eLife Roth, J. G., Muench, K. L., Asokan, A., Mallett, V. M., Gai, H., Verma, Y., Weber, S., Charlton, C., Fowler, J. L., Loh, K. M., Dolmetsch, R. E., Palmer, T. D. 2020; 9


    Microdeletions and microduplications of the 16p11.2 chromosomal locus are associated with syndromic neurodevelopmental disorders and reciprocal physiological conditions such as macro/microcephaly and high/low body mass index. To facilitate cellular and molecular investigations into these phenotypes, 65 clones of human induced pluripotent stem cells (hiPSCs) were generated from 13 individuals with 16p11.2 copy number variations (CNVs). To ensure these cell lines were suitable for downstream mechanistic investigations, a customizable bioinformatic strategy for the detection of random integration and expression of reprogramming vectors was developed and leveraged towards identifying a subset of 'footprint'-free hiPSC clones. Transcriptomic profiling of cortical neural progenitor cells derived from these hiPSCs identified alterations in gene expression patterns which precede morphological abnormalities reported at later neurodevelopmental stages. Interpreting clinical information-available with the cell lines by request from the Simons Foundation Autism Research Initiative-with this transcriptional data revealed disruptions in gene programs related to both nervous system function and cellular metabolism. As demonstrated by these analyses, this publicly available resource has the potential to serve as a powerful medium for probing the etiology of developmental disorders associated with 16p11.2 CNVs.

    View details for DOI 10.7554/eLife.58178

    View details for PubMedID 33169669

  • Bioprinting Cell- and Spheroid-Laden Protein-Engineered Hydrogels as Tissue-on-Chip Platforms. Frontiers in bioengineering and biotechnology Duarte Campos, D. F., Lindsay, C. D., Roth, J. G., LeSavage, B. L., Seymour, A. J., Krajina, B. A., Ribeiro, R. n., Costa, P. F., Blaeser, A. n., Heilshorn, S. C. 2020; 8: 374


    Human tissues, both in health and disease, are exquisitely organized into complex three-dimensional architectures that inform tissue function. In biomedical research, specifically in drug discovery and personalized medicine, novel human-based three-dimensional (3D) models are needed to provide information with higher predictive value compared to state-of-the-art two-dimensional (2D) preclinical models. However, current in vitro models remain inadequate to recapitulate the complex and heterogenous architectures that underlie biology. Therefore, it would be beneficial to develop novel models that could capture both the 3D heterogeneity of tissue (e.g., through 3D bioprinting) and integrate vascularization that is necessary for tissue viability (e.g., through culture in tissue-on-chips). In this proof-of-concept study, we use elastin-like protein (ELP) engineered hydrogels as bioinks for constructing such tissue models, which can be directly dispensed onto endothelialized on-chip platforms. We show that this bioprinting process is compatible with both single cell suspensions of neural progenitor cells (NPCs) and spheroid aggregates of breast cancer cells. After bioprinting, both cell types remain viable in incubation for up to 14 days. These results demonstrate a first step toward combining ELP engineered hydrogels with 3D bioprinting technologies and on-chip platforms comprising vascular-like channels for establishing functional tissue models.

    View details for DOI 10.3389/fbioe.2020.00374

    View details for PubMedID 32411691

    View details for PubMedCentralID PMC7198818

  • Bioprinting of stem cell expansion lattices. Acta biomaterialia Lindsay, C. D., Roth, J. G., LeSavage, B. L., Heilshorn, S. C. 2019


    Stem cells have great potential in regenerative medicine, with neural progenitor cells (NPCs) being developed as a therapy for many central nervous system diseases and injuries. However, one limitation to the clinical translation of stem cells is the resource-intensive, two-dimensional culture protocols required for biomanufacturing a clinically-relevant number of cells. This challenge can be overcome in an easy-to-produce and cost-effective 3D platform by bioprinting NPCs in a layered lattice structure. Here we demonstrate that alginate biopolymers are an ideal bioink for expansion lattices and do not require chemical modifications for effective NPC expansion. Alginate bioinks that are lightly crosslinked prior to printing can shield printed NPCs from potential mechanical damage caused by printing. NPCs within alginate expansion lattices remain in a stem-like state while undergoing a 2.5-fold expansion. Importantly, we demonstrate the ability to efficiently remove NPCs from printed lattices for future down-stream use as a cell-based therapy. These results demonstrate that 3D bioprinting of alginate expansion lattices is a viable and economical platform for NPC expansion that could be translated to clinical applications.

    View details for PubMedID 31096043

  • RNA-protein interaction detection in living cells. Nature methods Ramanathan, M. n., Majzoub, K. n., Rao, D. S., Neela, P. H., Zarnegar, B. J., Mondal, S. n., Roth, J. G., Gai, H. n., Kovalski, J. R., Siprashvili, Z. n., Palmer, T. D., Carette, J. E., Khavari, P. A. 2018


    RNA-protein interactions play numerous roles in cellular function and disease. Here we describe RNA-protein interaction detection (RaPID), which uses proximity-dependent protein labeling, based on the BirA* biotin ligase, to rapidly identify the proteins that bind RNA sequences of interest in living cells. RaPID displays utility in multiple applications, including in evaluating protein binding to mutant RNA motifs in human genetic disorders, in uncovering potential post-transcriptional networks in breast cancer, and in discovering essential host proteins that interact with Zika virus RNA. To improve the BirA*-labeling component of RaPID, moreover, a new mutant BirA* was engineered from Bacillus subtilis, termed BASU, that enables >1,000-fold faster kinetics and >30-fold increased signal-to-noise ratio over the prior standard Escherichia coli BirA*, thereby enabling direct study of RNA-protein interactions in living cells on a timescale as short as 1 min.

    View details for PubMedID 29400715