Professional Education

  • Doctor of Science, University of Notre Dame (2018)
  • Master of Science, Fudan University (2014)
  • Bachelor of Engineering, Sichuan University (2011)

Lab Affiliations

All Publications

  • Accelerated Electron Transfer in Nanostructured Electrodes Improves the Sensitivity of Electrochemical Biosensors. Advanced science (Weinheim, Baden-Wurttemberg, Germany) Fu, K., Seo, J., Kesler, V., Maganzini, N., Wilson, B. D., Eisenstein, M., Murmann, B., Soh, H. T. 2021: e2102495


    Electrochemical biosensors hold the exciting potential to integrate molecular detection with signal processing and wireless communication in a miniaturized, low-cost system. However, as electrochemical biosensors are miniaturized to the micrometer scale, their signal-to-noise ratio degrades and reduces their utility for molecular diagnostics. Studies have reported that nanostructured electrodes can improve electrochemical biosensor signals, but since the underlying mechanism remains poorly understood, it remains difficult to fully exploit this phenomenon to improve biosensor performance. In this work, electrochemical aptamer biosensors on nanoporous electrode are optimized to achieve improved sensitivity by tuning pore size, probe density, and electrochemical measurement parameters. Further, a novel mechanism in which electron transfer is physically accelerated within nanostructured electrodes due to reduced charge screening, resulting in enhanced sensitivity is proposed and experimentally validated. In concert with the increased surface areas achieved with this platform, this newly identified effect can yield an up to 24-fold increase in signal level and nearly fourfold lower limit of detection relative to planar electrodes with the same footprint. Importantly, this strategy can be generalized to virtually any electrochemical aptamer sensor, enabling sensitive detection in applications where miniaturization is a necessity, and should likewise prove broadly applicable for improving electrochemical biosensor performance in general.

    View details for DOI 10.1002/advs.202102495

    View details for PubMedID 34668339

  • Actively Controllable Solid-Phase Microextraction in a Hierarchically Organized Block Copolymer-Nanopore Electrode Array Sensor for Charge-Selective Detection of Bacterial Metabolites. Analytical chemistry Jia, J., Kwon, S., Baek, S., Sundaresan, V., Cao, T., Cutri, A. R., Fu, K., Roberts, B., Shrout, J. D., Bohn, P. W. 2021


    Pseudomonas aeruginosa produces a number of phenazine metabolites, including pyocyanin (PYO), phenazine-1-carboxamide (PCN), and phenazine-1-carboxylic acid (PCA). Among these, PYO has been most widely studied as a biomarker of P. aeruginosa infection. However, despite its broad-spectrum antibiotic properties and its role as a precursor in the biosynthetic route leading to other secondary phenazines, PCA has attracted less attention, partially due to its relatively low concentration and interference from other highly abundant phenazines. This challenge is addressed here by constructing a hierarchically organized nanostructure consisting of a pH-responsive block copolymer (BCP) membrane with nanopore electrode arrays (NEAs) filled with gold nanoparticles (AuNPs) to separate and detect PCA in bacterial environments. The BCP@NEA strategy is designed such that adjusting the pH of the bacterial medium to 4.5, which is above the pKa of PCA but below the pKa of PYO and PCN, ensures that PCA is negatively charged and can be selectively transported across the BCP membrane. At pH 4.5, only PCA is transported into the AuNP-filled NEAs, while PYO and PCN are blocked. Structural characterization illustrates the rigorous spatial segregation of the AuNPs in the NEA nanopore volume, allowing PCA secreted from P. aeruginosa to be quantitatively determined as a function of incubation time using square-wave voltammetry and surface-enhanced Raman spectroscopy. The strategy proposed in this study can be extended by changing the nature of the hydrophilic block and subsequently applied to detect other redox-active metabolites at a low concentration in complex biological samples and, thus, help understand metabolism in microbial communities.

    View details for DOI 10.1021/acs.analchem.1c02998

    View details for PubMedID 34661405

  • Ion Gating in Nanopore Electrode Arrays with Hierarchically Organized pH-Responsive Block Copolymer Membranes. ACS applied materials & interfaces Baek, S., Kwon, S., Fu, K., Bohn, P. W. 2020


    Inspired by biological ion channels, artificial nanopore-based architectures have been developed for smart ion/molecular transport control with potential applications to iontronics and energy conversion. Advances in nanofabrication technology enable simple, versatile construction methods, and post-fabrication functionalization delivers nanochannels with unique ion transport-control attributes. Here, we characterize a pH-responsive, charge-selective dual-gating block copolymer (BCP) membrane composed of polystyrene-b-poly(4-vinylpyridine) (PS48400-b-P4VP21300), capable of self-organizing into highly ordered nanocylindrical domains. Because the PS-b-P4VP membrane exhibits pH-dependent structural transitions, it is suitable for designing intelligent pH-gated biomimetic channels, for example, exhibiting on-off transport switching at pH values near the pKa of P4VP with excellent anion permselectivity at pH < pKa. Introducing the BCP membrane onto nanopore electrode arrays (BCP@NEAs) allows the BCP to serve as a pH-responsive gate controlling ion transfer into the NEA nanopores. Such selectively transported and confined ions are detected by using a 100 nm gap dual-ring nanoelectrode structure capable of enhancing current output by efficient redox cycling with an amplification factor >102. In addition, BCP@NEAs exhibit extraordinary pH-gated ion selectivity, resulting in a 3380-fold current difference between anion and cation probes at pH 3.0. This hierarchically organized BCP-gated NEA system can serve as a template for the development of other stimulus-responsive ion gates, for example, those based on temperature and ligand gating, thus exploiting the intrinsic advantages of NEAs, such as enhanced sensitivity based on redox cycling, which may lead to technological applications such as engineered biosensors and iontronic devices.

    View details for DOI 10.1021/acsami.0c12926

    View details for PubMedID 33222437

  • Engineering the Interaction Dynamics between Nano-Topographical Immunocyte-Templated Micromotors across Scales from Ions to Cells. Small (Weinheim an der Bergstrasse, Germany) Wang, J., Ahmed, R., Zeng, Y., Fu, K., Soto, F., Sinclair, B., Soh, H. T., Demirci, U. 2020: e2005185


    Manufacturing mobile artificial micromotors with structural design factors, such as morphology nanoroughness and surface chemistry, can improve the capture efficiency through enhancing contact interactions with their surrounding targets. Understanding the interplay of such parameters targeting high locomotion performance and high capture efficiency at the same time is of paramount importance, yet, has so far been overlooked. Here, an immunocyte-templated nano-topographical micromotor is engineered and their interactions with various targets across multiple scales, from ions to cells are investigated. The macrophage templated nanorough micromotor demonstrates significantly increased surface interactions and significantly improved and highly efficient removal of targets from complex aqueous solutions, including in plasma and diluted blood, when compared to smooth synthetic material templated micromotors with the same size and surface chemistry. These results suggest that the surface nanoroughness of the micromotors for the locomotion performance and interactions with the multiscale targets should be considered simultaneously, for they are highly interconnected in design considerations impacting applications across scales.

    View details for DOI 10.1002/smll.202005185

    View details for PubMedID 33174334

  • Electrowetting-Mediated Transport to Produce Electrochemical Transistor Action in Nanopore Electrode Arrays. Small (Weinheim an der Bergstrasse, Germany) Kwon, S., Baek, S., Fu, K., Bohn, P. W. 2020: e1907249


    Understanding water behavior in confined volumes is important in applications ranging from water purification to healthcare devices. Especially relevant are wetting and dewetting phenomena which can be switched by external stimuli, such as light and electric fields. Here, these behaviors are exploited for electrochemical processing by voltage-directed ion transport in nanochannels contained within nanopore arrays in which each nanopore presents three electrodes. The top and middle electrodes (TE and ME) are in direct contact with the nanopore volume, but the bottom electrode (BE) is buried beneath a 70 nm silicon nitride (SiNx ) insulating layer. Electrochemical transistor operation is realized when small, defect-mediated channels are opened in the SiNx . These defect channels exhibit voltage-driven wetting that mediates the mass transport of redox species to/from the BE. When BE is held at a potential maintaining the defect channels in the wetted state, setting the potential of ME at either positive or negative overpotential results in strong electrochemical rectification with rectification factors up to 440. By directing the voltage-induced electrowetting of defect channels, these three-electrode nanopore structures can achieve precise gating and ion/molecule separation, and, as such, may be useful for applications such as water purification and drug delivery.

    View details for DOI 10.1002/smll.201907249

    View details for PubMedID 32270930

  • Single Entity Electrochemistry in Nanopore Electrode Arrays: Ion Transport Meets Electron Transfer in Confined Geometries. Accounts of chemical research Fu, K. n., Kwon, S. R., Han, D. n., Bohn, P. W. 2020


    Electrochemical measurements conducted in confined volumes provide a powerful and direct means to address scientific questions at the nexus of nanoscience, biotechnology, and chemical analysis. How are electron transfer and ion transport coupled in confined volumes and how does understanding them require moving beyond macroscopic theories? Also, how do these coupled processes impact electrochemical detection and processing? We address these questions by studying a special type of confined-volume architecture, the nanopore electrode array, or NEA, which is designed to be commensurate in size with physical scaling lengths, such as the Debye length, a concordance that offers performance characteristics not available in larger scale structures. The experiments described here depend critically on carefully constructed nanoscale architectures that can usefully control molecular transport and electrochemical reactivity. We begin by considering the experimental constraints that guide the design and fabrication of zero-dimensional nanopore arrays with multiple embedded electrodes. These zero-dimensional structures are nearly ideal for exploring how permselectivity and unscreened ion migration can be combined to amplify signals and improve selectivity by enabling highly efficient redox cycling. Our studies also highlight the benefits of arrays, in that molecules escaping from a single nanopore are efficiently captured by neighboring pores and returned to the population of active redox species being measured, benefits that arise from coupling ion accumulation and migration. These tools for manipulating redox species are well-positioned to explore single molecule and single particle electron transfer events through spectroelectrochemistry, studies which are enabled by the electrochemical zero-mode waveguide (ZMW), a special hybrid nanophotonic/nanoelectronic architecture in which the lower ring electrode of an NEA nanopore functions both as a working electrode to initiate electron transfer reactions and as the optical cladding layer of a ZMW. While the work described here is largely exploratory and fundamental, we believe that the development of NEAs will enable important applications that emerge directly from the unique coupled transport and electron-transfer capabilities of NEAs, including in situ molecular separation and detection with external stimuli, redox-based electrochemical rectification in individually encapsulated nanopores, and coupled sorters and analyzers for nanoparticles.

    View details for DOI 10.1021/acs.accounts.9b00543

    View details for PubMedID 31990518