Professional Education

  • Bachelor of Science, Technische Universitat Munchen (2008)
  • Master of Science, Technische Universitat Munchen (2011)
  • Doctor of Philosophy, Technische Universitat Munchen (2015)

Stanford Advisors

All Publications

  • Cross-Platform Comparison of Untargeted and Targeted Lipidomics Approaches on Aging Mouse Plasma. Scientific reports Contrepois, K., Mahmoudi, S., Ubhi, B. K., Papsdorf, K., Hornburg, D., Brunet, A., Snyder, M. 2018; 8 (1): 17747


    Lipidomics - the global assessment of lipids - can be performed using a variety of mass spectrometry (MS)-based approaches. However, choosing the optimal approach in terms of lipid coverage, robustness and throughput can be a challenging task. Here, we compare a novel targeted quantitative lipidomics platform known as the Lipidyzer to a conventional untargeted liquid chromatography (LC)-MS approach. We find that both platforms are efficient in profiling more than 300 lipids across 11 lipid classes in mouse plasma with precision and accuracy below 20% for most lipids. While the untargeted and targeted platforms detect similar numbers of lipids, the former identifies a broader range of lipid classes and can unambiguously identify all three fatty acids in triacylglycerols (TAG). Quantitative measurements from both approaches exhibit a median correlation coefficient (r) of 0.99 using a dilution series of deuterated internal standards and 0.71 using endogenous plasma lipids in the context of aging. Application of both platforms to plasma from aging mouse reveals similar changes in total lipid levels across all major lipid classes and in specific lipid species. Interestingly, TAG is the lipid class that exhibits the most changes with age, suggesting that TAG metabolism is particularly sensitive to the aging process in mice. Collectively, our data show that the Lipidyzer platform provides comprehensive profiling of the most prevalent lipids in plasma in a simple and automated manner.

    View details for PubMedID 30532037

  • Linking Lipid Metabolism to Chromatin Regulation in Aging. Trends in cell biology Papsdorf, K., Brunet, A. 2018


    The lifespan of an organism is strongly influenced by environmental factors (including diet) and by internal factors (notably reproductive status). Lipid metabolism is critical for adaptation to external conditions or reproduction. Interestingly, specific lipid profiles are associated with longevity, and increased uptake of certain lipids extends longevity in Caenorhabditis elegans and ameliorates disease phenotypes in humans. How lipids impact longevity, and how lipid metabolism is regulated during aging, is just beginning to be unraveled. This review describes recent advances in the regulation and role of lipids in longevity, focusing on the interaction between lipid metabolism and chromatin states in aging and age-related diseases.

    View details for PubMedID 30316636