Professional Education


  • Doctor of Philosophy, University of Virginia, Biomedical Engineering (2018)
  • Bachelor of Science, University of California, Berkeley, Bioengineering (2013)

All Publications


  • Role of boundary conditions in determining cell alignment in response to stretch PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Chen, K., Vigliotti, A., Bacca, M., McMeeking, R. M., Deshpande, V. S., Holmes, J. W. 2018; 115 (5): 986–91

    Abstract

    The ability of cells to orient in response to mechanical stimuli is essential to embryonic development, cell migration, mechanotransduction, and other critical physiologic functions in a range of organs. Endothelial cells, fibroblasts, mesenchymal stem cells, and osteoblasts all orient perpendicular to an applied cyclic stretch when plated on stretchable elastic substrates, suggesting a common underlying mechanism. However, many of these same cells orient parallel to stretch in vivo and in 3D culture, and a compelling explanation for the different orientation responses in 2D and 3D has remained elusive. Here, we conducted a series of experiments designed specifically to test the hypothesis that differences in strains transverse to the primary loading direction give rise to the different alignment patterns observed in 2D and 3D cyclic stretch experiments ("strain avoidance"). We found that, in static or low-frequency stretch conditions, cell alignment in fibroblast-populated collagen gels correlated with the presence or absence of a restraining boundary condition rather than with compaction strains. Cyclic stretch could induce perpendicular alignment in 3D culture but only at frequencies an order of magnitude greater than reported to induce perpendicular alignment in 2D. We modified a published model of stress fiber dynamics and were able to reproduce our experimental findings across all conditions tested as well as published data from 2D cyclic stretch experiments. These experimental and model results suggest an explanation for the apparently contradictory alignment responses of cells subjected to cyclic stretch on 2D membranes and in 3D gels.

    View details for DOI 10.1073/pnas.1715059115

    View details for Web of Science ID 000423728800055

    View details for PubMedID 29343646

    View details for PubMedCentralID PMC5798351

  • Tissue Engineering of Axially Vascularized Soft-Tissue Flaps with a Poly-(e-Caprolactone) Nanofiber-Hydrogel Composite ADVANCES IN WOUND CARE Henn, D., Chen, K., Fischer, K., Rauh, A., Barrera, J. A., Kim, Y., Martin, R., Hannig, M., Niedoba, P., Reddy, S., Mao, H., Kneser, U., Gurtner, G., Sacks, J. M., Schmidt, V. J. 2020
  • Multiscale computational model of Achilles tendon wound healing: Untangling the effects of repair and loading PLOS COMPUTATIONAL BIOLOGY Chen, K., Hu, X., Blemker, S. S., Holmes, J. W. 2018; 14 (12): e1006652

    Abstract

    Mechanical stimulation of the healing tendon is thought to regulate scar anisotropy and strength and is relatively easy to modulate through physical therapy. However, in vivo studies of various loading protocols in animal models have produced mixed results. To integrate and better understand the available data, we developed a multiscale model of rat Achilles tendon healing that incorporates the effect of changes in the mechanical environment on fibroblast behavior, collagen deposition, and scar formation. We modified an OpenSim model of the rat right hindlimb to estimate physiologic strains in the lateral/medial gastrocnemius and soleus musculo-tendon units during loading and unloading conditions. We used the tendon strains as inputs to a thermodynamic model of stress fiber dynamics that predicts fibroblast alignment, and to determine local collagen synthesis rates according to a response curve derived from in vitro studies. We then used an agent-based model (ABM) of scar formation to integrate these cell-level responses and predict tissue-level collagen alignment and content. We compared our model predictions to experimental data from ten different studies. We found that a single set of cellular response curves can explain features of observed tendon healing across a wide array of reported experiments in rats-including the paradoxical finding that repairing transected tendon reverses the effect of loading on alignment-without fitting model parameters to any data from those experiments. The key to these successful predictions was simulating the specific loading and surgical protocols to predict tissue-level strains, which then guided cellular behaviors according to response curves based on in vitro experiments. Our model results provide a potential explanation for the highly variable responses to mechanical loading reported in the tendon healing literature and may be useful in guiding the design of future experiments and interventions.

    View details for DOI 10.1371/journal.pcbi.1006652

    View details for Web of Science ID 000454835100044

    View details for PubMedID 30550566

    View details for PubMedCentralID PMC6310293