Academic Appointments

  • Physical Science Research Scientist, T. H. Geballe Laboratory for Advanced Materials

All Publications

  • Release dynamics of nanodiamonds created by laser-driven shock-compression of polyethylene terephthalate. Scientific reports Heuser, B., Bergermann, A., Stevenson, M. G., Ranjan, D., He, Z., Lütgert, J., Schumacher, S., Bethkenhagen, M., Descamps, A., Galtier, E., Gleason, A. E., Khaghani, D., Glenn, G. D., Cunningham, E. F., Glenzer, S. H., Hartley, N. J., Hernandez, J. A., Humphries, O. S., Katagiri, K., Lee, H. J., McBride, E. E., Miyanishi, K., Nagler, B., Ofori-Okai, B., Ozaki, N., Pandolfi, S., Qu, C., May, P. T., Redmer, R., Schoenwaelder, C., Sueda, K., Yabuuchi, T., Yabashi, M., Lukic, B., Rack, A., Zinta, L. M., Vinci, T., Benuzzi-Mounaix, A., Ravasio, A., Kraus, D. 2024; 14 (1): 12239


    Laser-driven dynamic compression experiments of plastic materials have found surprisingly fast formation of nanodiamonds (ND) via X-ray probing. This mechanism is relevant for planetary models, but could also open efficient synthesis routes for tailored NDs. We investigate the release mechanics of compressed NDs by molecular dynamics simulation of the isotropic expansion of finite size diamond from different P-T states. Analysing the structural integrity along different release paths via molecular dynamic simulations, we found substantial disintegration rates upon shock release, increasing with the on-Hugnoiot shock temperature. We also find that recrystallization can occur after the expansion and hence during the release, depending on subsequent cooling mechanisms. Our study suggests higher ND recovery rates from off-Hugoniot states, e.g., via double-shocks, due to faster cooling. Laser-driven shock compression experiments of polyethylene terephthalate (PET) samples with in situ X-ray probing at the simulated conditions found diamond signal that persists up to 11 ns after breakout. In the diffraction pattern, we observed peak shifts, which we attribute to thermal expansion of the NDs and thus a total release of pressure, which indicates the stability of the released NDs.

    View details for DOI 10.1038/s41598-024-62367-7

    View details for PubMedID 38806565

    View details for PubMedCentralID 7275726

  • Static and shock compression studies of eutectic high-entropy alloy AlCoCrFeNi<sub>2.1</sub> to ultrahigh pressures JOURNAL OF APPLIED PHYSICS Katagiri, K., Irvine, S. J., Hari, A., Kodama, R., Ozaki, N., Sano, T., Ren, J., Yang, W., Chen, W., Clay, M. P., Pope, A. D., Iwan, S., Dresselhaus-Marais, L. E., Vohra, Y. K. 2024; 135 (9)

    View details for DOI 10.1063/5.0192103

    View details for Web of Science ID 001184182200003

  • Direct imaging of shock wave splitting in diamond at Mbar pressure MATTER AND RADIATION AT EXTREMES Makarov, S., Dyachkov, S., Pikuz, T., Katagiri, K., Nakamura, H., Zhakhovsky, V., Inogamov, N., Khokhlov, V., Martynenko, A., Albertazzi, B., Rigon, G., Mabey, P., Hartley, N. J., Inubushi, Y., Miyanishi, K., Sueda, K., Togashi, T., Yabashi, M., Yabuuchi, T., Okuchi, T., Kodama, R., Pikuz, S., Koenig, M., Ozaki, N. 2023; 8 (6)

    View details for DOI 10.1063/5.0156681

    View details for Web of Science ID 001079145700006

  • Simultaneous bright- and dark-field X-ray microscopy at X-ray free electron lasers. Scientific reports Dresselhaus-Marais, L. E., Kozioziemski, B., Holstad, T. S., Ræder, T. M., Seaberg, M., Nam, D., Kim, S., Breckling, S., Choi, S., Chollet, M., Cook, P. K., Folsom, E., Galtier, E., Gonzalez, A., Gorkhover, T., Guillet, S., Haldrup, K., Howard, M., Katagiri, K., Kim, S., Kim, S., Kim, S., Kim, H., Knudsen, E. B., Kuschel, S., Lee, H. J., Lin, C., McWilliams, R. S., Nagler, B., Nielsen, M. M., Ozaki, N., Pal, D., Pablo Pedro, R., Saunders, A. M., Schoofs, F., Sekine, T., Simons, H., van Driel, T., Wang, B., Yang, W., Yildirim, C., Poulsen, H. F., Eggert, J. H. 2023; 13 (1): 17573


    The structures, strain fields, and defect distributions in solid materials underlie the mechanical and physical properties across numerous applications. Many modern microstructural microscopy tools characterize crystal grains, domains and defects required to map lattice distortions or deformation, but are limited to studies of the (near) surface. Generally speaking, such tools cannot probe the structural dynamics in a way that is representative of bulk behavior. Synchrotron X-ray diffraction based imaging has long mapped the deeply embedded structural elements, and with enhanced resolution, dark field X-ray microscopy (DFXM) can now map those features with the requisite nm-resolution. However, these techniques still suffer from the required integration times due to limitations from the source and optics. This work extends DFXM to X-ray free electron lasers, showing how the [Formula: see text] photons per pulse available at these sources offer structural characterization down to 100 fs resolution (orders of magnitude faster than current synchrotron images). We introduce the XFEL DFXM setup with simultaneous bright field microscopy to probe density changes within the same volume. This work presents a comprehensive guide to the multi-modal ultrafast high-resolution X-ray microscope that we constructed and tested at two XFELs, and shows initial data demonstrating two timing strategies to study associated reversible or irreversible lattice dynamics.

    View details for DOI 10.1038/s41598-023-35526-5

    View details for PubMedID 37845245

    View details for PubMedCentralID 8279502

  • Transonic dislocation propagation in diamond. Science (New York, N.Y.) Katagiri, K., Pikuz, T., Fang, L., Albertazzi, B., Egashira, S., Inubushi, Y., Kamimura, G., Kodama, R., Koenig, M., Kozioziemski, B., Masaoka, G., Miyanishi, K., Nakamura, H., Ota, M., Rigon, G., Sakawa, Y., Sano, T., Schoofs, F., Smith, Z. J., Sueda, K., Togashi, T., Vinci, T., Wang, Y., Yabashi, M., Yabuuchi, T., Dresselhaus-Marais, L. E., Ozaki, N. 2023; 382 (6666): 69-72


    The motion of line defects (dislocations) has been studied for more than 60 years, but the maximum speed at which they can move is unresolved. Recent models and atomistic simulations predict the existence of a limiting velocity of dislocation motion between the transonic and subsonic ranges at which the self-energy of dislocation diverges, though they do not deny the possibility of the transonic dislocations. We used femtosecond x-ray radiography to track ultrafast dislocation motion in shock-compressed single-crystal diamond. By visualizing stacking faults extending faster than the slowest sound wave speed of diamond, we show the evidence of partial dislocations at their leading edge moving transonically. Understanding the upper limit of dislocation mobility in crystals is essential to accurately model, predict, and control the mechanical properties of materials under extreme conditions.

    View details for DOI 10.1126/science.adh5563

    View details for PubMedID 37796999

  • Effects of hydrogen concentration in ablator material on stimulated Raman scattering, two-plasmon decay, and hot electrons for direct-drive inertial confinement fusion PHYSICAL REVIEW RESEARCH Kawasaki, K., Cristoforetti, G., Idesaka, T., Hironaka, Y., Tanaka, D., Batani, D., Fujioka, S., Gizzi, L. A., Hata, M., Johzaki, T., Katagiri, K., Kodama, R., Nagatomo, H., Matsuo, S., Nicolai, P., Ozaki, N., Sentoku, Y., Takizawa, R., Yogo, A., Yamada, H., Shigemori, K. 2023; 5 (3)
  • Nanolamellar phase transition in an additively manufactured eutectic high-entropy alloy under high pressures AIP ADVANCES Pope, A. D., Iwan, S., Clay, M. P., Vohra, Y. K., Katagiri, K., Dresselhaus-Marais, L., Ren, J., Chen, W. 2023; 13 (3)

    View details for DOI 10.1063/5.0138668

    View details for Web of Science ID 000952386200005

  • Diamond formation kinetics in shock-compressed C─H─O samples recorded by small-angle x-ray scattering and x-ray diffraction. Science advances He, Z., Rodel, M., Lutgert, J., Bergermann, A., Bethkenhagen, M., Chekrygina, D., Cowan, T. E., Descamps, A., French, M., Galtier, E., Gleason, A. E., Glenn, G. D., Glenzer, S. H., Inubushi, Y., Hartley, N. J., Hernandez, J., Heuser, B., Humphries, O. S., Kamimura, N., Katagiri, K., Khaghani, D., Lee, H. J., McBride, E. E., Miyanishi, K., Nagler, B., Ofori-Okai, B., Ozaki, N., Pandolfi, S., Qu, C., Ranjan, D., Redmer, R., Schoenwaelder, C., Schuster, A. K., Stevenson, M. G., Sueda, K., Togashi, T., Vinci, T., Voigt, K., Vorberger, J., Yabashi, M., Yabuuchi, T., Zinta, L. M., Ravasio, A., Kraus, D. 2022; 8 (35): eabo0617


    Extreme conditions inside ice giants such as Uranus and Neptune can result in peculiar chemistry and structural transitions, e.g., the precipitation of diamonds or superionic water, as so far experimentally observed only for pure C─H and H2O systems, respectively. Here, we investigate a stoichiometric mixture of C and H2O by shock-compressing polyethylene terephthalate (PET) plastics and performing in situ x-ray probing. We observe diamond formation at pressures between 72 ± 7 and 125 ± 13 GPa at temperatures ranging from ~3500 to ~6000 K. Combining x-ray diffraction and small-angle x-ray scattering, we access the kinetics of this exotic reaction. The observed demixing of C and H2O suggests that diamond precipitation inside the ice giants is enhanced by oxygen, which can lead to isolated water and thus the formation of superionic structures relevant to the planets' magnetic fields. Moreover, our measurements indicate a way of producing nanodiamonds by simple laser-driven shock compression of cheap PET plastics.

    View details for DOI 10.1126/sciadv.abo0617

    View details for PubMedID 36054354

  • Hugoniot equation-of-state and structure of laser-shocked polyimide C22H10N2O5 PHYSICAL REVIEW B Katagiri, K., Ozaki, N., Murayama, D., Nonaka, K., Hironaka, Y., Inubushi, Y., Miyanishi, K., Nakamura, H., Okuchi, T., Sano, T., Seto, Y., Shigemori, K., Sueda, K., Togashi, T., Umeda, Y., Yabashi, M., Yabuuchi, T., Kodama, R. 2022; 105 (5)