Education & Certifications


  • B.S., San Francisco State University, Cell and Molecular Biology (2014)

Lab Affiliations


All Publications


  • Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 2018; 562 (7727): 367–72

    Abstract

    Here we present a compendium of single-cell transcriptomic data from the model organism Mus musculus that comprises more than 100,000 cells from 20 organs and tissues. These data represent a new resource for cell biology, reveal gene expression in poorly characterized cell populations and enable the direct and controlled comparison of gene expression in cell types that are shared between tissues, such as T lymphocytes and endothelial cells from different anatomical locations. Two distinct technical approaches were used for most organs: one approach, microfluidic droplet-based 3'-end counting, enabled the survey of thousands of cells at relatively low coverage, whereas the other, full-length transcript analysis based on fluorescence-activated cell sorting, enabled the characterization of cell types with high sensitivity and coverage. The cumulative data provide the foundation for an atlas of transcriptomic cell biology.

    View details for DOI 10.1038/s41586-018-0590-4

    View details for PubMedID 30283141

  • A radial axis defined by semaphorin-to-neuropilin signaling controls pancreatic islet morphogenesis. Development (Cambridge, England) Pauerstein, P. T., Tellez, K., Willmarth, K. B., Park, K. M., Hsueh, B., Efsun Arda, H., Gu, X., Aghajanian, H., Deisseroth, K., Epstein, J. A., Kim, S. K. 2017; 144 (20): 3744–54

    Abstract

    The islets of Langerhans are endocrine organs characteristically dispersed throughout the pancreas. During development, endocrine progenitors delaminate, migrate radially and cluster to form islets. Despite the distinctive distribution of islets, spatially localized signals that control islet morphogenesis have not been discovered. Here, we identify a radial signaling axis that instructs developing islet cells to disperse throughout the pancreas. A screen of pancreatic extracellular signals identified factors that stimulated islet cell development. These included semaphorin 3a, a guidance cue in neural development without known functions in the pancreas. In the fetal pancreas, peripheral mesenchymal cells expressed Sema3a, while central nascent islet cells produced the semaphorin receptor neuropilin 2 (Nrp2). Nrp2 mutant islet cells developed in proper numbers, but had defects in migration and were unresponsive to purified Sema3a. Mutant Nrp2 islets aggregated centrally and failed to disperse radially. Thus, Sema3a-Nrp2 signaling along an unrecognized pancreatic developmental axis constitutes a chemoattractant system essential for generating the hallmark morphogenetic properties of pancreatic islets. Unexpectedly, Sema3a- and Nrp2-mediated control of islet morphogenesis is strikingly homologous to mechanisms that regulate radial neuronal migration and cortical lamination in the developing mammalian brain.

    View details for PubMedID 28893946