
Krti Tallam
Ph.D. Student in Biology, admitted Autumn 2020
Ph.D. Minor, Comparative Studies in Race and Ethnicity
Bio
Krti studies marine diseases via machine learning techniques, and is interested in long-term marine disease implications for planetary health and environmental justice.
All Publications
-
The role of diseases in unifying the health of global estuaries
FRONTIERS IN MARINE SCIENCE
2023; 10
View details for DOI 10.3389/fmars.2023.1185662
View details for Web of Science ID 001022906800001
-
Application of Deep Learning for Classification of Intertidal Eelgrass from Drone-Acquired Imagery
REMOTE SENSING
2023; 15 (9)
View details for DOI 10.3390/rs15092321
View details for Web of Science ID 000987830900001
-
Climatic, land-use and socio-economic factors can predict malaria dynamics at fine spatial scales relevant to local health actors: Evidence from rural Madagascar.
PLOS global public health
2023; 3 (2): e0001607
Abstract
While much progress has been achieved over the last decades, malaria surveillance and control remain a challenge in countries with limited health care access and resources. High-resolution predictions of malaria incidence using routine surveillance data could represent a powerful tool to health practitioners by targeting malaria control activities where and when they are most needed. Here, we investigate the predictors of spatio-temporal malaria dynamics in rural Madagascar, estimated from facility-based passive surveillance data. Specifically, this study integrates climate, land-use, and representative household survey data to explain and predict malaria dynamics at a high spatial resolution (i.e., by Fokontany, a cluster of villages) relevant to health care practitioners. Combining generalized linear mixed models (GLMM) and path analyses, we found that socio-economic, land use and climatic variables are all important predictors of monthly malaria incidence at fine spatial scales, via both direct and indirect effects. In addition, out-of-sample predictions from our model were able to identify 58% of the Fokontany in the top quintile for malaria incidence and account for 77% of the variation in the Fokontany incidence rank. These results suggest that it is possible to build a predictive framework using environmental and social predictors that can be complementary to standard surveillance systems and help inform control strategies by field actors at local scales.
View details for DOI 10.1371/journal.pgph.0001607
View details for PubMedID 36963091
View details for PubMedCentralID PMC10021226
-
Predicting Flood Hazards in the Vietnam Central Region: An Artificial Neural Network Approach
SUSTAINABILITY
2022; 14 (19)
View details for DOI 10.3390/su141911861
View details for Web of Science ID 000867295200001
-
IDENTIFICATION OF SNAILS AND SCHISTOSOMA OF MEDICAL IMPORTANCE VIA CONVOLUTIONAL NEURAL NETWORKS
AMER SOC TROP MED & HYGIENE. 2021: 295
View details for Web of Science ID 000778105603011