Stanford Advisors


All Publications


  • A Gut Commensal-Produced Metabolite Mediates Colonization Resistance to Salmonella Infection. Cell host & microbe Jacobson, A., Lam, L., Rajendram, M., Tamburini, F., Honeycutt, J., Pham, T., Van Treuren, W., Pruss, K., Stabler, S. R., Lugo, K., Bouley, D. M., Vilches-Moure, J. G., Smith, M., Sonnenburg, J. L., Bhatt, A. S., Huang, K. C., Monack, D. 2018

    Abstract

    The intestinal microbiota provides colonization resistance against pathogens, limiting pathogen expansion and transmission. These microbiota-mediated mechanisms were previously identified by observing loss of colonization resistance after antibiotic treatment or dietary changes, which severely disrupt microbiota communities. We identify a microbiota-mediated mechanism of colonization resistance against Salmonella enterica serovar Typhimurium (S. Typhimurium) by comparing high-complexity commensal communities with different levels of colonization resistance. Using inbred mouse strains with different infection dynamics and S. Typhimurium intestinal burdens, we demonstrate that Bacteroides species mediate colonization resistance against S. Typhimurium by producing the short-chain fatty acid propionate. Propionate directly inhibits pathogen growth invitro by disrupting intracellular pH homeostasis, and chemically increasing intestinal propionate levels protects mice from S.Typhimurium. In addition, administering susceptible mice Bacteroides, but not a propionate-production mutant, confers resistance to S. Typhimurium. This work provides mechanistic understanding into the role of individualized microbial communities in host-to-host variability of pathogen transmission.

    View details for DOI 10.1016/j.chom.2018.07.002

    View details for PubMedID 30057174

  • Pseudogenization of the Secreted Effector Gene sseI Confers Rapid Systemic Dissemination of S. Typhimurium ST313 within Migratory Dendritic Cells. Cell host & microbe Carden, S. E., Walker, G. T., Honeycutt, J., Lugo, K., Pham, T., Jacobson, A., Bouley, D., Idoyaga, J., Tsolis, R. M., Monack, D. 2017; 21 (2): 182-194

    Abstract

    Genome degradation correlates with host adaptation and systemic disease in Salmonella. Most lineages of the S. enterica subspecies Typhimurium cause gastroenteritis in humans; however, the recently emerged ST313 lineage II pathovar commonly causes systemic bacteremia in sub-Saharan Africa. ST313 lineage II displays genome degradation compared to gastroenteritis-associated lineages; yet, the mechanisms and causal genetic differences mediating these infection phenotypes are largely unknown. We find that the ST313 isolate D23580 hyperdisseminates from the gut to systemic sites, such as the mesenteric lymph nodes (MLNs), via CD11b(+) migratory dendritic cells (DCs). This hyperdissemination was facilitated by the loss of sseI, which encodes an effector that inhibits DC migration in gastroenteritis-associated isolates. Expressing functional SseI in D23580 reduced the number of infected migratory DCs and bacteria in the MLN. Our study reveals a mechanism linking pseudogenization of effectors with the evolution of niche adaptation in a bacterial pathogen.

    View details for DOI 10.1016/j.chom.2017.01.009

    View details for PubMedID 28182950

    View details for PubMedCentralID PMC5325708

  • T6SS: The bacterial "fight club" in the host gut. Plos Pathogens Sana, T. G., Lugo, K. A., Monack, D. M. 2017
  • Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proceedings of the National Academy of Sciences of the United States of America Sana, T. G., Flaugnatti, N., Lugo, K. A., Lam, L. H., Jacobson, A., Baylot, V., durand, e., Journet, L., Cascales, E., Monack, D. M. 2016; 113 (34): E5044-51

    Abstract

    The mammalian gastrointestinal tract is colonized by a high-density polymicrobial community where bacteria compete for niches and resources. One key competition strategy includes cell contact-dependent mechanisms of interbacterial antagonism, such as the type VI secretion system (T6SS), a multiprotein needle-like apparatus that injects effector proteins into prokaryotic and/or eukaryotic target cells. However, the contribution of T6SS antibacterial activity during pathogen invasion of the gut has not been demonstrated. We report that successful establishment in the gut by the enteropathogenic bacterium Salmonella enterica serovar Typhimurium requires a T6SS encoded within Salmonella pathogenicity island-6 (SPI-6). In an in vitro setting, we demonstrate that bile salts increase SPI-6 antibacterial activity and that S Typhimurium kills commensal bacteria in a T6SS-dependent manner. Furthermore, we provide evidence that one of the two T6SS nanotube subunits, Hcp1, is required for killing Klebsiella oxytoca in vitro and that this activity is mediated by the specific interaction of Hcp1 with the antibacterial amidase Tae4. Finally, we show that K. oxytoca is killed in the host gut in an Hcp1-dependent manner and that the T6SS antibacterial activity is essential for Salmonella to establish infection within the host gut. Our findings provide an example of pathogen T6SS-dependent killing of commensal bacteria as a mechanism to successfully colonize the host gut.

    View details for DOI 10.1073/pnas.1608858113

    View details for PubMedID 27503894

    View details for PubMedCentralID PMC5003274

  • Maternal IgG and IgA Antibodies Dampen Mucosal T Helper Cell Responses in Early Life CELL Koch, M. A., Reiner, G. L., Lugo, K. A., Kreuk, L. S., Stanbery, A. G., Ansaldo, E., Seher, T. D., Ludington, W. B., Barton, G. M. 2016; 165 (4): 827-841

    Abstract

    To maintain a symbiotic relationship between the host and its resident intestinal microbiota, appropriate mucosal T cell responses to commensal antigens must be established. Mice acquire both IgG and IgA maternally; the former has primarily been implicated in passive immunity to pathogens while the latter mediates host-commensal mutualism. Here, we report the surprising observation that mice generate T cell-independent and largely Toll-like receptor (TLR)-dependent IgG2b and IgG3 antibody responses against their gut microbiota. We demonstrate that maternal acquisition of these antibodies dampens mucosal T follicular helper responses and subsequent germinal center B cell responses following birth. This work reveals a feedback loop whereby T cell-independent, TLR-dependent antibodies limit mucosal adaptive immune responses to newly acquired commensal antigens and uncovers a broader function for maternal IgG.

    View details for DOI 10.1016/j.cell.2016.04.055

    View details for Web of Science ID 000375800300012

    View details for PubMedID 27153495

    View details for PubMedCentralID PMC4866587