Bio


My PhD work is focused on symbiotic interactions between land plants and soil fungi. Specifically, I am interested in the ectomycorrhizal symbiosis, an obligate, intimate mutualism between dominant woody plants in the temperate zones (Pinacea, Fagaceae, Salicaceae, etc.) and soil fungi in the Asco- and Basidiomycota. This relationship, in which plants trade fixed carbon (sugars) to the fungi in exchange for soil resources like nitrogen, has arisen dozens of times independently in the fungal lineages. I am interested in how this interaction functions on a physiological and genetic level, particularly with respect to compatibility between diverse plants and fungi, and how variation in symbiotic function across fungal lineages and environmental conditions contributes to the stability of the interaction over evolutionary time.

All Publications


  • Testing the co-invasion hypothesis: ectomycorrhizal fungal communities on Alnus glutinosa and Salix fragilis in New Zealand DIVERSITY AND DISTRIBUTIONS Bogar, L. M., Dickie, I. A., Kennedy, P. G. 2015; 21 (3): 268-278

    View details for DOI 10.1111/ddi.12304

    View details for Web of Science ID 000349970100003

  • Interspecific mycorrhizal networks and non-networking hosts: exploring the ecology of the host genus Alnus Mycorrhizal Networks Kennedy, P. G., Walker, J. M., Bogar, L. M. Springer. 2015
  • New wrinkles in an old paradigm: neighborhood effects can modify the structure and specificity of Alnus-associated ectomycorrhizal fungal communities FEMS MICROBIOLOGY ECOLOGY Bogar, L. M., Kennedy, P. G. 2013; 83 (3): 767-777

    Abstract

    Host identity has been recognized as a key determinant of the structure of ectomycorrhizal (ECM) fungal communities, but the importance of neighboring ECM hosts is less well understood. To investigate the relative importance of host and neighborhood effects, we examined the ECM fungal communities associated with Alnus rhombifolia, a host of specific ECM fungi, and Betula occidentalis, a host of generalist ECM fungi. We hypothesized that the host-specific Alnus-associated ECM fungal community would not be susceptible to the influence of plant neighborhood, while the generalist Betula-associated community would. ECM fungal communities on both hosts were characterized using ITS sequences derived from conspecific and heterospecific host settings at a field site in western Idaho, USA, and from a growth chamber bioassay. In the field study, the Betula neighborhood added minor constituents to the Alnus ECM fungal community, while in the bioassay, late planting of Betula generated strong priority effects that allowed the established Alnus neighborhood to control the structure of the Betula community. Our results indicate that while host identity acts as a primary filter on the composition and diversity of ECM fungal communities, proximity to a closely related host can mediate significant changes in community structure.

    View details for DOI 10.1111/1574-6941.12032

    View details for Web of Science ID 000314474100021

    View details for PubMedID 23078526