All Publications


  • Ferroptosis regulation by the NGLY1/NFE2L1 pathway. Proceedings of the National Academy of Sciences of the United States of America Forcina, G. C., Pope, L., Murray, M., Dong, W., Abu-Remaileh, M., Bertozzi, C. R., Dixon, S. J. 2022; 119 (11): e2118646119

    Abstract

    SignificanceFerroptosis is an oxidative form of cell death whose biochemical regulation remains incompletely understood. Cap'n'collar (CNC) transcription factors including nuclear factor erythroid-2-related factor 1 (NFE2L1/NRF1) and NFE2L2/NRF2 can both regulate oxidative stress pathways but are each regulated in a distinct manner, and whether these two transcription factors can regulate ferroptosis independent of one another is unclear. We find that NFE2L1 can promote ferroptosis resistance, independent of NFE2L2, by maintaining the expression of glutathione peroxidase 4 (GPX4), a key protein that prevents lethal lipid peroxidation. NFE2L2 can also promote ferroptosis resistance but does so through a distinct mechanism that appears independent of GPX4 protein expression. These results suggest that NFE2L1 and NFE2L2 independently regulate ferroptosis.

    View details for DOI 10.1073/pnas.2118646119

    View details for PubMedID 35271393

  • Reactivity-Based Probe of the Iron(II)-Dependent Interactome Identifies New Cellular Modulators of Ferroptosis. Journal of the American Chemical Society Chen, Y. C., Oses-Prieto, J. A., Pope, L. E., Burlingame, A. L., Dixon, S. J., Renslo, A. R. 2020

    Abstract

    Ferroptosis is an iron-dependent form of cell death resulting from loss or inhibition of cellular machinery that protects from the accumulation of lipid hydroperoxides. Ferroptosis likely serves a tumor suppressing function in normal cellular homeostasis, but certain cancers exploit and become highly dependent on specific nodes of the pathway, presumably to survive under conditions of increased oxidative stress and elevated labile ferrous iron levels. Here we introduce Ferroptosis Inducing Peroxide for Chemoproteomics-1 (FIPC-1), a reactivity-based probe that couples Fenton-type reaction with ferrous iron to subsequent protein labeling via concomitant carbon-centered radical generation. We show that FIPC-1 induces ferroptosis in susceptible cell types and labels cellular proteins in an iron-dependent fashion. Use of FIPC-1 in a quantitative chemoproteomics workflow reproducibly enriched protein targets in the thioredoxin, oxidoreductase, and protein disulfide isomerase (PDI) families, among others. In further interrogating the saturable targets of FIPC-1, we identified the PDI family member P4HB and the functionally uncharacterized protein NT5DC2, a member of the haloacid dehalogenase (HAD) superfamily, as previously unrecognized modulators of ferroptosis. Knockdown of these target genes sensitized cells to known ferroptosis inducers, while PACMA31, a previously reported inhibitor of P4HB, directly induced ferroptosis and was highly synergistic with erastin. Overall, this study introduces a new reactivity-based probe of the ferrous iron-dependent interactome and uncovers new targets for the therapeutic modulation of ferroptosis.

    View details for DOI 10.1021/jacs.0c06709

    View details for PubMedID 33124817

  • Quaternary Structure, Salt Sensitivity, and Allosteric Regulation of beta-AMYLASE2 From Arabidopsis thaliana FRONTIERS IN PLANT SCIENCE Monroe, J. D., Pope, L. E., Breault, J. S., Berndsen, C. E., Storm, A. R. 2018; 9