Professional Education

  • Doctor of Philosophy, University of Tennessee (2012)
  • Bachelor of Engineering, Zhejiang University (2008)

Stanford Advisors

Journal Articles

  • Photocured Biodegradable Polymer Substrates of Varying Stiffness and Microgroove Dimensions for Promoting Nerve Cell Guidance and Differentiation LANGMUIR Cai, L., Zhang, L., Dong, J., Wang, S. 2012; 28 (34): 12557-12568


    Photocross-linkable and biodegradable polymers have great promise in fabricating nerve conduits for guiding axonal growth in peripheral nerve regeneration. Here, we photocross-linked two poly(ε-caprolactone) triacrylates (PCLTAs) with number-average molecular weights of ~7000 and ~10,000 g mol(-1) into substrates with parallel microgrooves. Cross-linked PCLTA7k was amorphous and soft, while cross-linked PCLTA10k was semicrystalline with a stiffer surface. We employed different dimensions of interests for the parallel microgrooves, that is, groove widths of 5, 15, 45, and 90 μm and groove depths of 0.4, 1, 5, and 12 μm. The behaviors of rat Schwann cell precursor line (SpL201) cells with the glial nature and pheochromocytoma (PC12) cells with the neuronal nature were studied on these microgrooved substrates, showing distinct preference to the substrates with different mechanical properties. We found different threshold sensitivities of the two nerve cell types to topographical features when their cytoskeleton and nuclei were altered by varying the groove depth and width. Almost all of the cells were aligned in the narrowest and deepest microgrooves or around the edge of microgrooves. Oriented SpL201 cell movement had a higher motility as compared to unaligned ones. After forskolin treatment, SpL201 cells demonstrated significantly upregulated S-100 and O4 on stiffer substrates or narrower microgrooves, suggesting more differentiation toward early Schwann cells (SCs). PC12 neurites were oriented with enhanced extension in narrower microgrooves. The present results not only improve our fundamental understanding on nerve cell-substrate interactions, but also offer useful conduit materials and appropriate feature dimensions to foster guidance for axonal growth in peripheral nerve regeneration.

    View details for DOI 10.1021/la302868q

    View details for Web of Science ID 000307988700018

    View details for PubMedID 22857011

  • Injectable and Biodegradable Nanohybrid Polymers with Simultaneously Enhanced Stiffness and Toughness for Bone Repair ADVANCED FUNCTIONAL MATERIALS Cai, L., Chen, J., Rondinone, A. J., Wang, S. 2012; 22 (15): 3181-3190
  • Optimal Poly(L-lysine) Grafting Density in Hydrogels for Promoting Neural Progenitor Cell Functions BIOMACROMOLECULES Cai, L., Lu, J., Sheen, V., Wang, S. 2012; 13 (5): 1663-1674


    Recently, we have developed a photopolymerizable poly(L-lysine) (PLL) that can be covalently incorporated into poly(ethylene glycol) diacrylate (PEGDA) hydrogels to improve their bioactivity by providing positive charges. To explore the potential of these PLL-grafted PEGDA hydrogels as a cell delivery vehicle and luminal filler in nerve guidance conduits for peripheral and central nerve regeneration, we varied the number of pendent PLL chains in the hydrogels by photo-cross-linking PEGDA with weight compositions of PLL (φ(PLL)) of 0, 1, 2, 3, and 5%. We further investigated the effect of PLL grafting density on E14 mouse neural progenitor cell (NPC) behavior including cell viability, attachment, proliferation, differentiation, and gene expression. The amount of actually grafted PLL and charge densities were characterized, showing a proportional increase with the feed composition φ(PLL). NPC viability in 3D hydrogels was significantly improved in a PLL grafting density-dependent manner at days 7 and 14 postencapsulation. Similarly, NPC attachment and proliferation were promoted on the PLL-grafted hydrogels with increasing φ(PLL) up to 2%. More intriguingly, NPC lineage commitment was dramatically altered by the amount of grafted PLL chains in the hydrogels. NPC differentiation demonstrated a parabolic or nonmonotonic dependence on φ(PLL), resulting in cells mostly differentiated toward mature neurons with extensive neurite formation and astrocytes rather than oligodendrocytes on the PLL-grafted hydrogels with φ(PLL) of 2%, whereas the neutral hydrogels and PLL-grafted hydrogels with higher φ(PLL) of 5% support NPC differentiation less. Gene expression of lineage markers further illustrated this trend, indicating that PLL-grafted hydrogels with an optimal φ(PLL) of 2% could be a promising cell carrier that promoted NPC functions for treatment of nerve injuries.

    View details for DOI 10.1021/bm300381d

    View details for Web of Science ID 000303951600049

    View details for PubMedID 22533450

  • Lubricated Biodegradable Polymer Networks for Regulating Nerve Cell Behavior and Fabricating Nerve Conduits with a Compositional Gradient BIOMACROMOLECULES Cai, L., Lu, J., Sheen, V., Wang, S. 2012; 13 (2): 358-368


    We present a method of tuning surface chemistry and nerve cell behavior by photo-cross-linking methoxy poly(ethylene glycol) monoacrylate (mPEGA) with hydrophobic, semicrystalline poly(ε-caprolactone) diacrylate (PCLDA) at various weight compositions of mPEGA (ø(m)) from 2 to 30%. Improved surface wettability is achieved with corresponding decreases in friction, water contact angle, and capability of adsorbing proteins from cell culture media because of repulsive PEG chains tethered in the network. The responses of rat Schwann cell precursor line (SpL201), rat pheochromocytoma (PC12), and E14 mouse neural progenitor cells (NPCs) to the modified surfaces are evaluated. Nonmonotonic or parabolic dependence of cell attachment, spreading, proliferation, and differentiation on ø(m) is identified for these cell types with maximal values at ø(m) of 5-7%. In addition, NPCs demonstrate enhanced neuronal differentiated lineages on the mPEGA/PCLDA network at ø(m) of 5% with intermediate wettability and surface energy. This approach lays the foundation for fabricating heterogeneous nerve conduits with a compositional gradient along the wall thickness, which are able to promote nerve cell functions within the conduit while inhibiting cell attachment on the outer wall to prevent potential fibrous tissue formation following implantation.

    View details for DOI 10.1021/bm201372u

    View details for Web of Science ID 000300115900009

    View details for PubMedID 22206477

  • Promoting Nerve Cell Functions on Hydrogels Grafted with Poly(L-lysine) BIOMACROMOLECULES Cai, L., Lu, J., Sheen, V., Wang, S. 2012; 13 (2): 342-349


    We present a novel photopolymerizable poly(L-lysine) (PLL) and use it to modify polyethylene glycol diacrylate (PEGDA) hydrogels for creating a better, permissive nerve cell niche. Compared with their neutral counterparts, these PLL-grafted hydrogels greatly enhance pheochromocytoma (PC12) cell survival in encapsulation, proliferation, and neurite growth and also promote neural progenitor cell proliferation and differentiation capacity, represented by percentages of both differentiated neurons and astrocytes. The role of efficiently controlled substrate stiffness in regulating nerve cell behavior is also investigated and a polymerizable cationic small molecule, [2-(methacryloyloxy)ethyl]-trimethylammonium chloride (MTAC), is used to compare with this newly developed PLL. The results indicate that these PLL-grafted hydrogels are promising biomaterials for nerve repair and regeneration.

    View details for DOI 10.1021/bm201763n

    View details for Web of Science ID 000300115900007

    View details for PubMedID 22251248

  • Exposed hydroxyapatite particles on the surface of photo-crosslinked nanocomposites for promoting MC3T3 cell proliferation and differentiation ACTA BIOMATERIALIA Cai, L., Guinn, A. S., Wang, S. 2011; 7 (5): 2185-2199


    We present a systematic study for investigating the role of exposed hydroxyapatite (HA) nanoparticles in influencing surface characteristics and mouse pre-osteoblastic MC3T3-E1 cell behavior using nanocomposites prepared by photo-crosslinking poly(ε-caprolactone) diacrylate (PCLDA) with HA. PCLDA530 and PCLDA2000 synthesized from poly(ε-caprolactone) diol precursors with nominal molecular weights of 530 and 2000 g mol(-1) were used as the polymer matrices. Crosslinked PCLDA530 was amorphous while crosslinked PCLDA2000 was semi-crystalline. Crosslinked PCLDA/HA composites with different compositions of HA (10%, 20% and 30%) as well as crosslinked PCLDAs were characterized in terms of their composition-dependent physicochemical properties. The tensile, compressive and shear moduli were greatly enhanced by incorporating HA nanoparticles with the polymer matrices. The disk surfaces of original crosslinked PCLDA/HA nanocomposites were removed by cutting using a blade to expose HA nanoparticles that were embedded in the polymer substrates. The composition of HA was much higher on the cut surface, particularly in semi-crystalline crosslinked PCLDA2000/HA nanocomposites. The surface characteristics of original and cut crosslinked PCLDA/HA nanocomposites were compared and correlated with cell behavior on these nanocomposites. MC3T3-E1 cell attachment, proliferation and differentiation were significantly enhanced when the HA composition was increased in original crosslinked PCLDA/HA nanocomposites due to more bioactive HA, higher surface stiffness and rougher topography. More exposed HA on the surface of cut semi-crystalline PCLDA2000/HA nanocomposites resulted in improved hydrophilicity and significantly better MC3T3 cell attachment, proliferation and differentiation compared with the original surfaces. This study suggests that HA nanoparticles may not be fully exploited in polymer/HA nanocomposites where the top polymer surface covers the particles. The removal of this polymer layer can generate more desirable surfaces and osteoconductivity for bone repair and regeneration.

    View details for DOI 10.1016/j.actbio.2011.01.034

    View details for Web of Science ID 000290649500028

    View details for PubMedID 21284960

  • Parabolic dependence of material properties and cell behavior on the composition of polymer networks via simultaneously controlling crosslinking density and crystallinity BIOMATERIALS Cai, L., Wang, S. 2010; 31 (29): 7423-7434


    A systematic investigation was performed on regulating materials properties and cell behavior using hybrid networks composed of amorphous poly(propylene fumarate) (PPF) and three poly(epsilon-caprolactone) diacrylates (PCLDAs) with variance in crystallinity and melting temperature. Through controlling both crosslinking density and crystallinity in the photo-crosslinked PPF/PCLDA blends, mechanical properties could be tuned efficiently in a wide range. For PCLDA synthesized from a low-molecular weight PCL diol precursor with a low crystallinity and a low melting point, crosslinks could completely suppress crystalline domains over the composition range in the PPF/PCLDA networks. Consequently, tensile, shear, torsional, and compression moduli all increased with the composition of PPF or the crosslinking density continuously for amorphous PPF/PCLDA networks. For PCLDAs synthesized using two PCL diols with higher molecular weights, crystallinity remained for the PCLDA compositions between approximately 80% and 100%. Minimum moduli and tensile stress at break were found at the lowest required composition of PPF for suppressing crystallinity. Surface physicochemical properties and morphology of the crosslinked blend disks have been characterized and their capabilities of adsorbing proteins from cell culture medium have been determined. Using both mouse MC3T3-E1 cells and rat Schwann cell precursor line (SpL201) cells, cell responses to these polymer networks such as cell adhesion, spreading, and proliferation were found to be dramatically distinct on different polymer networks and demonstrated non-monotonic or parabolic dependence on the network composition, coincident with the composition dependence of the mechanical properties.

    View details for DOI 10.1016/j.biomaterials.2010.06.028

    View details for Web of Science ID 000281183200002

    View details for PubMedID 20663551

  • Poly(ethylene glycol)-grafted poly(propylene fumarate) networks and parabolic dependence of MC3T3 cell behavior on the network composition BIOMATERIALS Cai, L., Wang, K., Wang, S. 2010; 31 (16): 4457-4466


    We present a method to modify poly(propylene fumarate) (PPF), an injectable biomaterial for bone-tissue-engineering applications, by photo-crosslinking it with methoxy poly(ethylene glycol) monoacrylate (mPEGA) at various mPEGA compositions of 0-30%. The bulk properties such as thermal and rheological properties of uncrosslinked mPEGA/PPF blends and the mechanical properties of photo-crosslinked mPEGA/PPF blends were also investigated and correlated with surface characteristics to elaborate on the modulation of mouse MC3T3 cell adhesion, spreading, proliferation and differentiation through controlled physicochemical properties. Unlike PPF crosslinked with PEG dimethacrylate, mPEGA chains tethered on the surface of crosslinked PPF did not influence the swelling ratio in water while increased surface hydrophilicity greatly. Meanwhile, surface frictional coefficient and the capability of adsorbing proteins from cell culture medium decreased continuously with increasing the mPEGA composition in mPEGA/PPF networks. Demonstrating cell repulsive effect at the mPEGA compositions higher than 7%, the modified surfaces improved MC3T3 cell attachment, proliferation and differentiation, which reached maxima at the mPEGA composition of 5-7%. Besides revealing that mPEGA pendant chains could enhance cell responses by increasing hydrophilicity when their fraction on the hydrophobic surface was small, the present study also offered a new method of improving the wettability and performance of the scaffolds made from PPF for bone repair.

    View details for DOI 10.1016/j.biomaterials.2010.02.020

    View details for Web of Science ID 000277549600001

    View details for PubMedID 20202682

  • Poly(epsilon-caprolactone) acrylates synthesized using a facile method for fabricating networks to achieve controllable physicochemical properties and tunable cell responses POLYMER Cai, L., Wang, S. 2010; 51 (1): 164-177
  • Elucidating Colorization in the Functionalization of Hydroxyl-Containing Polymers Using Unsaturated Anhydrides/Acyl Chlorides in the Presence of Triethylamine BIOMACROMOLECULES Cai, L., Wang, S. 2010; 11 (1): 304-307

    View details for DOI 10.1021/bm901237t

    View details for Web of Science ID 000273402500039

    View details for PubMedID 20000349