All Publications


  • Deep-Subwavelength Thermal Switch via Resonant Coupling in Monolayer Hexagonal Boron Nitride PHYSICAL REVIEW APPLIED Papadakis, G. T., Ciccarino, C. J., Fan, L., Orenstein, M., Narang, P., Fan, S. 2021; 15 (5)
  • Nighttime Radiative Cooling for Water Harvesting from Solar Panels ACS PHOTONICS Li, W., Dong, M., Fan, L., John, J., Chen, Z., Fan, S. 2021; 8 (1): 269–75
  • Maximal nighttime electrical power generation via optimal radiative cooling OPTICS EXPRESS Fan, L., Li, W., Jin, W., Orenstein, M., Fan, S. 2020; 28 (17): 25460–70

    Abstract

    We present a systematic optimization of nighttime thermoelectric power generation system utilizing radiative cooling. We show that an electrical power density >2 W/m2, two orders of magnitude higher than the previously reported experimental result, is achievable using existing technologies. This system combines radiative cooling and thermoelectric power generation and operates at night when solar energy harvesting is unavailable. The thermoelectric power generator (TEG) itself covers less than 1 percent of the system footprint area when achieving this optimal power generation, showing economic feasibility. We study the influence of emissivity spectra, thermal convection, thermoelectric figure of merit and the area ratio between the TEG and the radiative cooler on the power generation performance. We optimize the thermal radiation emitter attached to the cold side and propose practical material implementation. The importance of the optimal emitter is elucidated by the gain of 153% in power density compared to regular blackbody emitters.

    View details for DOI 10.1364/OE.397714

    View details for Web of Science ID 000560936200091

    View details for PubMedID 32907066

  • Nonreciprocal radiative heat transfer between two planar bodies PHYSICAL REVIEW B Fan, L., Guo, Y., Papadakis, G. T., Zhao, B., Zhao, Z., Buddhiraju, S., Orenstein, M., Fan, S. 2020; 101 (8)