Clinical Focus


  • Anatomic Pathology

Professional Education


  • Medical Education: Stanford University School of Medicine (2013) CA
  • Board Certification: American Board of Pathology, Hematopathology (2017)
  • Fellowship: Stanford University Hemapathology Fellowship (2017) CA
  • Board Certification: American Board of Pathology, Anatomic Pathology (2016)
  • Fellowship: Stanford University Department of Pathology (2016) CA
  • Residency: Stanford University Department of Pathology (2016) CA

All Publications


  • Cross-talk between hypoxia and insulin signaling through Phd3 regulates hepatic glucose and lipid metabolism and ameliorates diabetes NATURE MEDICINE Taniguchi, C. M., Finger, E. C., Krieg, A. J., Wu, C., Diep, A. N., Lagory, E. L., Wei, K., McGinnis, L. M., Yuan, J., Kuo, C. J., Giaccia, A. J. 2013; 19 (10): 1325-?

    Abstract

    Signaling initiated by hypoxia and insulin powerfully alters cellular metabolism. The protein stability of hypoxia-inducible factor-1 alpha (Hif-1α) and Hif-2α is regulated by three prolyl hydroxylase domain-containing protein isoforms (Phd1, Phd2 and Phd3). Insulin receptor substrate-2 (Irs2) is a critical mediator of the anabolic effects of insulin, and its decreased expression contributes to the pathophysiology of insulin resistance and diabetes. Although Hif regulates many metabolic pathways, it is unknown whether the Phd proteins regulate glucose and lipid metabolism in the liver. Here, we show that acute deletion of hepatic Phd3, also known as Egln3, improves insulin sensitivity and ameliorates diabetes by specifically stabilizing Hif-2α, which then increases Irs2 transcription and insulin-stimulated Akt activation. Hif-2α and Irs2 are both necessary for the improved insulin sensitivity, as knockdown of either molecule abrogates the beneficial effects of Phd3 knockout on glucose tolerance and insulin-stimulated Akt phosphorylation. Augmenting levels of Hif-2α through various combinations of Phd gene knockouts did not further improve hepatic metabolism and only added toxicity. Thus, isoform-specific inhibition of Phd3 could be exploited to treat type 2 diabetes without the toxicity that could occur with chronic inhibition of multiple Phd isoforms.

    View details for DOI 10.1038/nm.3294

    View details for Web of Science ID 000325531700033

    View details for PubMedID 24037093

    View details for PubMedCentralID PMC4089950

  • A liver Hif-2 alpha-Irs2 pathway sensitizes hepatic insulin signaling and is modulated by Vegf inhibition NATURE MEDICINE Wei, K., Piecewicz, S. M., McGinnis, L. M., Taniguchi, C. M., Wiegand, S. J., Anderson, K., Chan, C. W., Mulligan, K. X., Kuo, D., Yuan, J., Vallon, M., Morton, L. C., Lefai, E., Simon, M. C., Maher, J. J., Mithieux, G., Rajas, F., Annes, J. P., McGuinness, O. P., Thurston, G., Giaccia, A. J., Kuo, C. J. 2013; 19 (10): 1331-?

    Abstract

    Insulin initiates diverse hepatic metabolic responses, including gluconeogenic suppression and induction of glycogen synthesis and lipogenesis. The liver possesses a rich sinusoidal capillary network with a higher degree of hypoxia and lower gluconeogenesis in the perivenous zone as compared to the rest of the organ. Here, we show that diverse vascular endothelial growth factor (VEGF) inhibitors improved glucose tolerance in nondiabetic C57BL/6 and diabetic db/db mice, potentiating hepatic insulin signaling with lower gluconeogenic gene expression, higher glycogen storage and suppressed hepatic glucose production. VEGF inhibition induced hepatic hypoxia through sinusoidal vascular regression and sensitized liver insulin signaling through hypoxia-inducible factor-2α (Hif-2α, encoded by Epas1) stabilization. Notably, liver-specific constitutive activation of HIF-2α, but not HIF-1α, was sufficient to augment hepatic insulin signaling through direct and indirect induction of insulin receptor substrate-2 (Irs2), an essential insulin receptor adaptor protein. Further, liver Irs2 was both necessary and sufficient to mediate Hif-2α and Vegf inhibition effects on glucose tolerance and hepatic insulin signaling. These results demonstrate an unsuspected intersection between Hif-2α-mediated hypoxic signaling and hepatic insulin action through Irs2 induction, which can be co-opted by Vegf inhibitors to modulate glucose metabolism. These studies also indicate distinct roles in hepatic metabolism for Hif-1α, which promotes glycolysis, and Hif-2α, which suppresses gluconeogenesis, and suggest new treatment approaches for type 2 diabetes mellitus.

    View details for DOI 10.1038/nm.3295

    View details for Web of Science ID 000325531700034

    View details for PubMedID 24037094

    View details for PubMedCentralID PMC3795838

  • Calcineurin sets the bandwidth for discrimination of signals during thymocyte development NATURE Gallo, E. M., Winslow, M. M., Cante-Barrett, K., Radermacher, A. N., Ho, L., McGinnis, L., Iritani, B., Neilson, J. R., Crabtree, G. R. 2007; 450 (7170): 731-U11

    Abstract

    At critical times in development, cells are able to convert graded signals into discrete developmental outcomes; however, the mechanisms involved are poorly understood. During thymocyte development, cell fate is determined by signals originating from the alphabeta T-cell receptor. Low-affinity/avidity interactions between the T-cell receptor and peptide-MHC complexes direct differentiation to the single-positive stage (positive selection), whereas high-affinity/avidity interactions induce death by apoptosis (negative selection). Here we show that mice deficient in both calcineurin and nuclear factor of activated T cells (NFAT)c2/c3 lack a population of preselection thymocytes with enhanced ability to activate the mitogen-activated protein kinase (Raf-MEK-ERK) pathway, and fail to undergo positive selection. This defect can be partially rescued with constitutively active Raf, indicating that calcineurin controls MAPK signalling. Analysis of mice deficient in both Bim (which is required for negative selection) and calcineurin revealed that calcineurin-induced ERK (extracellular signal-regulated kinase) sensitization is required for differentiation in response to 'weak' positive selecting signals but not in response to 'strong' negative selecting signals (which normally induce apoptosis). These results indicate that early calcineurin/NFAT signalling produces a developmental period of ERK hypersensitivity, allowing very weak signals to induce positive selection. This mechanism might be generally useful in the discrimination of graded signals that induce different cell fates.

    View details for DOI 10.1038/nature06305

    View details for Web of Science ID 000251209700056

    View details for PubMedID 18046413