Honors & Awards


  • Women in Molecular Imaging Network Scholar Award, World Molecular Imaging Society (2017)
  • Travel Grant, Stanford Bio-X (2017)
  • Travel Grant, World Molecular Imaging Society (2017)
  • IMPACT PhD scholarship, University College London (2012 - 2016)
  • Travel Grant, Guarantors of Brain (2015)
  • Travel Grant, World Molecular Imaging Society (2015)
  • Poster Award, European Society of Molecular Imaging (2014)
  • Travel Grant, Guarantors of Brain (2014)
  • Travel Grant, World Molecular Imaging Society (2014)
  • Travel Grant, University College London School of Life and Medical Sciences (2014)
  • Young Investigator Award, Semifinalist, World Molecular Imaging Society (2014)
  • Scholarship Award, Sir John Cass's Foundation (2007 - 2010)

Boards, Advisory Committees, Professional Organizations


  • Co-chair, Young Molecular Imaging Community in the United Kingdom, European Society of Molecular Imaging (2015 - 2018)

Professional Education


  • Doctor of Philosophy, University College London (2016)
  • Master of Research, Imperial College London, Biomedical Research (2012)
  • Bachelor of Science, University of Leicester, Medical Biochemistry (2010)

Stanford Advisors


Patents


  • Martin Pulé, Adam Badar, Louise Kiru, Mark Lythgoe, Adrien Peters. "United States Patent 20170056534 Detecting a Therapeutic Cell", University College London, Mar 2, 2017

All Publications


  • Lactic Acid Accumulation in the Tumor Microenvironment Suppresses F-18-FDG Uptake CANCER RESEARCH Turkcan, S., Kiru, L., Naczynski, D. J., Sasportas, L. S., Pratx, G. 2019; 79 (2): 410–19
  • Single-Cell Imaging Using Radioluminescence Microscopy Reveals Unexpected Binding Target for [18F]HFB MOLECULAR IMAGING AND BIOLOGY Kiru, L., Kim, T., Shen, B., Chin, F. T., Pratx, G. 2018; 20 (3): 378–87

    Abstract

    Cell-based therapies are showing great promise for a variety of diseases, but remain hindered by the limited information available regarding the biological fate, migration routes and differentiation patterns of infused cells in trials. Previous studies have demonstrated the feasibility of using positron emission tomography (PET) to track single cells utilising an approach known as positron emission particle tracking (PEPT). The radiolabel hexadecyl-4-[18F]fluorobenzoate ([18F]HFB) was identified as a promising candidate for PEPT, due to its efficient and long-lasting labelling capabilities. The purpose of this work was to characterise the labelling efficiency of [18F]HFB in vitro at the single-cell level prior to in vivo studies.The binding efficiency of [18F]HFB to MDA-MB-231 and Jurkat cells was verified in vitro using bulk gamma counting. The measurements were subsequently repeated in single cells using a new method known as radioluminescence microscopy (RLM) and binding of the radiolabel to the single cells was correlated with various fluorescent dyes.Similar to previous reports, bulk cell labelling was significantly higher with [18F]HFB (18.75 ± 2.47 dpm/cell, n = 6) than 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) (7.59 ± 0.73 dpm/cell, n = 7; p ≤ 0.01). However, single-cell imaging using RLM revealed that [18F]HFB accumulation in live cells (8.35 ± 1.48 cpm/cell, n = 9) was not significantly higher than background levels (4.83 ± 0.52 cpm/cell, n = 12; p > 0.05) and was 1.7-fold lower than [18F]FDG uptake in the same cell line (14.09 ± 1.90 cpm/cell, n = 13; p < 0.01). Instead, [18F]HFB was found to bind significantly to fragmented membranes associated with dead cell nuclei, suggesting an alternative binding target for [18F]HFB.This study demonstrates that bulk analysis alone does not always accurately portray the labelling efficiency, therefore highlighting the need for more routine screening of radiolabels using RLM to identify heterogeneity at the single-cell level.

    View details for PubMedID 29143174

  • Fluorescence-guided development of a tricistronic vector encoding bimodal optical and nuclear genetic reporters for in vivo cellular imaging EJNMMI RESEARCH Badar, A., Kiru, L., Kalber, T. L., Jathoul, A., Straathof, K., Arstad, E., Lythgoe, M. F., Pule, M. 2015; 5: 18

    Abstract

    In vivo imaging using genetic reporters is a central supporting tool in the development of cell and gene therapies affording us the ability to selectively track the therapeutic indefinitely. Previous studies have demonstrated the utility of the human norepinephrine transporter (hNET) as a positron emission tomography/single photon emission computed tomography (PET/SPECT) genetic reporter for in vivo cellular imaging. Here, our aim was to extend on this work and construct a tricistronic vector with dual optical (firefly luciferase) and nuclear (hNET) in vivo imaging and ex vivo histochemical capabilities. Guiding this development, we describe how a fluorescent substrate for hNET, 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP(+)), can be used to optimise vector design and serve as an in vitro functional screen.Vectors were designed to co-express a bright red-shifted firefly luciferase (FLuc), hNET and a small marker gene RQR8. Genes were co-expressed using 2A peptide linkage, and vectors were transduced into a T cell line, SupT1. Two vectors were constructed with different gene orientations; FLuc.2A.RQR8.2A.hNET and hNET.2A.FLuc.2A.RQR8. hNET function was assessed using ASP(+)-guided flow cytometry. In vivo cellular conspicuity was confirmed using sequential bioluminescence imaging (BLI) and SPECT imaging of transduced SupT1 cells injected into the flanks of mice.SupT1/FLuc.2A.RQR8.2A.hNET cells resulted in >4-fold higher ASP(+) uptake compared to SupT1/hNET.2A.FLuc.2A.RQR8, suggesting that 2A orientation effected hNET function. SupT1/FLuc.2A.RQR8.2A.hNET cells were readily visualised with both BLI and SPECT, demonstrating high signal to noise at 24 h post (123)I-meta-iodobenzylguanidine (MIBG) administration.In this study, a pre-clinical tricistronic vector with flow cytometry, BLI, SPECT and histochemical capabilities was constructed, which can be widely applied in cell tracking studies supporting the development of cell therapies. The study further demonstrates that hNET function in engineered cells can be assessed using ASP(+)-guided flow cytometry in place of costly radiosubstrate methodologies. This fluorogenic approach is unique to the hNET PET/SPECT reporter and may prove valuable when screening large numbers of cell lines or vector/mutant constructs.

    View details for DOI 10.1186/s13550-015-0097-z

    View details for Web of Science ID 000358130700001

    View details for PubMedID 25853023

    View details for PubMedCentralID PMC4385325

  • Neuroprotection against Traumatic Brain Injury by Xenon, but Not Argon, Is Mediated by Inhibition at the N-Methyl-D-Aspartate Receptor Glycine Site ANESTHESIOLOGY Harris, K., Armstrong, S. P., Campos-Pires, R., Kiru, L., Franks, N. P., Dickinson, R. 2013; 119 (5): 1137–48

    Abstract

    Xenon, the inert anesthetic gas, is neuroprotective in models of brain injury. The authors investigate the neuroprotective mechanisms of the inert gases such as xenon, argon, krypton, neon, and helium in an in vitro model of traumatic brain injury.The authors use an in vitro model using mouse organotypic hippocampal brain slices, subjected to a focal mechanical trauma, with injury quantified by propidium iodide fluorescence. Patch clamp electrophysiology is used to investigate the effect of the inert gases on N-methyl-D-aspartate receptors and TREK-1 channels, two molecular targets likely to play a role in neuroprotection.Xenon (50%) and, to a lesser extent, argon (50%) are neuroprotective against traumatic injury when applied after injury (xenon 43±1% protection at 72 h after injury [N=104]; argon 30±6% protection [N=44]; mean±SEM). Helium, neon, and krypton are devoid of neuroprotective effect. Xenon (50%) prevents development of secondary injury up to 48 h after trauma. Argon (50%) attenuates secondary injury, but is less effective than xenon (xenon 50±5% reduction in secondary injury at 72 h after injury [N=104]; argon 34±8% reduction [N=44]; mean±SEM). Glycine reverses the neuroprotective effect of xenon, but not argon, consistent with competitive inhibition at the N-methyl-D-aspartate receptor glycine site mediating xenon neuroprotection against traumatic brain injury. Xenon inhibits N-methyl-D-aspartate receptors and activates TREK-1 channels, whereas argon, krypton, neon, and helium have no effect on these ion channels.Xenon neuroprotection against traumatic brain injury can be reversed by increasing the glycine concentration, consistent with inhibition at the N-methyl-D-aspartate receptor glycine site playing a significant role in xenon neuroprotection. Argon and xenon do not act via the same mechanism.

    View details for DOI 10.1097/ALN.0b013e3182a2a265

    View details for Web of Science ID 000329797900021

    View details for PubMedID 23867231