All Publications


  • Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. Nature immunology Li, C., Lee, A., Grigoryan, L., Arunachalam, P. S., Scott, M. K., Trisal, M., Wimmers, F., Sanyal, M., Weidenbacher, P. A., Feng, Y., Adamska, J. Z., Valore, E., Wang, Y., Verma, R., Reis, N., Dunham, D., O'Hara, R., Park, H., Luo, W., Gitlin, A. D., Kim, P., Khatri, P., Nadeau, K. C., Pulendran, B. 2022

    Abstract

    Despite the success of the BNT162b2 mRNA vaccine, the immunological mechanisms that underlie its efficacy are poorly understood. Here we analyzed the innate and adaptive responses to BNT162b2 in mice, and show that immunization stimulated potent antibody and antigen-specific T cell responses, as well as strikingly enhanced innate responses after secondary immunization, which was concurrent with enhanced serum interferon (IFN)-gamma levels 1d following secondary immunization. Notably, we found that natural killer cells and CD8+ T cells in the draining lymph nodes are the major producers of this circulating IFN-gamma. Analysis of knockout mice revealed that induction of antibody and T cell responses to BNT162b2 was not dependent on signaling via Toll-like receptors 2, 3, 4, 5 and 7 nor inflammasome activation, nor the necroptosis or pyroptosis cell death pathways. Rather, the CD8+ T cell response induced by BNT162b2 was dependent on type I interferon-dependent MDA5 signaling. These results provide insights into the molecular mechanisms by which the BNT162b2 vaccine stimulates immune responses.

    View details for DOI 10.1038/s41590-022-01163-9

    View details for PubMedID 35288714

  • A molecular atlas of innate immunity to adjuvanted and live attenuated vaccines, in mice. Nature communications Lee, A., Scott, M. K., Wimmers, F., Arunachalam, P. S., Luo, W., Fox, C. B., Tomai, M., Khatri, P., Pulendran, B. 1800; 13 (1): 549

    Abstract

    Adjuvants hold great potential in enhancing vaccine efficacy, making the understanding and improving of adjuvants critical goals in vaccinology. The TLR7/8 agonist, 3M-052, induces long-lived humoral immunity in non-human primates and is currently being evaluated in human clinical trials. However, the innate mechanisms of 3M-052 have not been fully characterized. Here, we perform flow cytometry, single cell RNA-seq and ATAC-seq to profile the kinetics, transcriptomics and epigenomics of innate immune cells in murine draining lymph nodes following 3M-052-Alum/Ovalbumin immunization. We find that 3M-052-Alum/OVA induces a robust antiviral and interferon gene program, similar to the yellow fever vaccine, which is known to confer long-lasting protection. Activation of myeloid cells in dLNs persists through day 28 and single cell analysis reveals putative TF-gene regulatory programs in distinct myeloid cells and heterogeneity of monocytes. This study provides a comprehensive characterization of the transcriptomics and epigenomics of innate populations in the dLNs after vaccination.

    View details for DOI 10.1038/s41467-022-28197-9

    View details for PubMedID 35087093

  • Histologic subtype of cutaneous immune-related adverse events predicts overall survival in patients receiving immune checkpoint inhibitors. Journal of the American Academy of Dermatology Hirotsu, K. E., Scott, M. K., Marquez, C., Tran, A. T., Rieger, K. E., Novoa, R. A., Robinson, W. H., Kwong, B. Y., Zaba, L. C. 2021

    View details for DOI 10.1016/j.jaad.2021.11.050

    View details for PubMedID 34875301

  • Computational drug repositioning of atorvastatin for ulcerative colitis. Journal of the American Medical Informatics Association : JAMIA Bai, L., Scott, M. K., Steinberg, E., Kalesinskas, L., Habtezion, A., Shah, N. H., Khatri, P. 2021

    Abstract

    OBJECTIVE: Ulcerative colitis (UC) is a chronic inflammatory disorder with limited effective therapeutic options for long-term treatment and disease maintenance. We hypothesized that a multi-cohort analysis of independent cohorts representing real-world heterogeneity of UC would identify a robust transcriptomic signature to improve identification of FDA-approved drugs that can be repurposed to treat patients with UC.MATERIALS AND METHODS: We performed a multi-cohort analysis of 272 colon biopsy transcriptome samples across 11 publicly available datasets to identify a robust UC disease gene signature. We compared the gene signature to in vitro transcriptomic profiles induced by 781 FDA-approved drugs to identify potential drug targets. We used a retrospective cohort study design modeled after a target trial to evaluate the protective effect of predicted drugs on colectomy risk in patients with UC from the Stanford Research Repository (STARR) database and Optum Clinformatics DataMart.RESULTS: Atorvastatin treatment had the highest inverse-correlation with the UC gene signature among non-oncolytic FDA-approved therapies. In both STARR (n = 827) and Optum (n = 7821), atorvastatin intake was significantly associated with a decreased risk of colectomy, a marker of treatment-refractory disease, compared to patients prescribed a comparator drug (STARR: HR = 0.47, P = .03; Optum: HR = 0.66, P = .03), irrespective of age and length of atorvastatin treatment.DISCUSSION & CONCLUSION: These findings suggest that atorvastatin may serve as a novel therapeutic option for ameliorating disease in patients with UC. Importantly, we provide a systematic framework for integrating publicly available heterogeneous molecular data with clinical data at a large scale to repurpose existing FDA-approved drugs for a wide range of human diseases.

    View details for DOI 10.1093/jamia/ocab165

    View details for PubMedID 34529084

  • N-Propargylglycine: a unique suicide inhibitor of proline dehydrogenase with anticancer activity and brain-enhancing mitohormesis properties. Amino acids Scott, G. K., Mahoney, S., Scott, M., Loureiro, A., Lopez-Ramirez, A., Tanner, J. J., Ellerby, L. M., Benz, C. C. 2021

    Abstract

    Proline dehydrogenase (PRODH) is a mitochondrial inner membrane flavoprotein critical for cancer cell survival under stress conditions and newly recognized as a potential target for cancer drug development. Reversible (competitive) and irreversible (suicide) inhibitors of PRODH have been shown in vivo to inhibit cancer cell growth with excellent host tolerance. Surprisingly, the PRODH suicide inhibitor N-propargylglycine (N-PPG) also induces rapid decay of PRODH with concordant upregulation of mitochondrial chaperones (HSP-60, GRP-75) and the inner membrane protease YME1L1, signifying activation of the mitochondrial unfolded protein response (UPRmt) independent of anticancer activity. The present study was undertaken to address two aims: (i) use PRODH overexpressing human cancer cells (ZR-75-1) to confirm the UPRmt inducing properties of N-PPG relative to another equipotent irreversible PRODH inhibitor, thiazolidine-2-carboxylate (T2C); and (ii) employ biochemical and transcriptomic approaches to determine if orally administered N-PPG can penetrate the blood-brain barrier, essential for its future use as a brain cancer therapeutic, and also potentially protect normal brain tissue by inducing mitohormesis. Oral daily treatments of N-PPG produced a dose-dependent decline in brain mitochondrial PRODH protein without detectable impairment in mouse health; furthermore, mice repeatedly dosed with 50mg/kg N-PPG showed increased brain expression of the mitohormesis associated protease, YME1L1. Whole brain transcriptome (RNAseq) analyses of these mice revealed significant gene set enrichment in N-PPG stimulated neural processes (FDR p<0.05). Given this in vivo evidence of brain bioavailability and neural mitohormesis induction, N-PPG appears to be unique among anticancer agents and should be evaluated for repurposing as a pharmaceutical capable of mitigating the proteotoxic mechanisms driving neurodegenerative disorders.

    View details for DOI 10.1007/s00726-021-03012-9

    View details for PubMedID 34089390

  • Systems vaccinology of the BNT162b2 mRNA vaccine in humans. Nature Arunachalam, P. S., Scott, M. K., Hagan, T., Li, C., Feng, Y., Wimmers, F., Grigoryan, L., Trisal, M., Edara, V. V., Lai, L., Chang, S. E., Feng, A., Dhingra, S., Shah, M., Lee, A. S., Chinthrajah, S., Sindher, S. B., Mallajosyula, V., Gao, F., Sigal, N., Kowli, S., Gupta, S., Pellegrini, K., Tharp, G., Maysel-Auslender, S., Hamilton, S., Aoued, H., Hrusovsky, K., Roskey, M., Bosinger, S. E., Maecker, H. T., Boyd, S. D., Davis, M. M., Utz, P. J., Suthar, M. S., Khatri, P., Nadeau, K. C., Pulendran, B. 2021

    Abstract

    The emergency use authorization of two mRNA vaccines in less than a year since the emergence of SARS-CoV-2 represents a landmark in vaccinology1,2. Yet, how mRNA vaccines stimulate the immune system to elicit protective immune responses is unknown. Here we used a systems vaccinology approach to comprehensively profile the innate and adaptive immune responses of 56 healthy volunteers vaccinated with the Pfizer-BioNTech mRNA vaccine. Vaccination resulted in robust production of neutralizing antibodies (nAbs) against the parent Wuhan strain and, to a lesser extent, the B.1.351 strain, and significant increases in antigen-specific polyfunctional CD4 and CD8 T cells after the second dose. Booster vaccination stimulated a strikingly enhanced innate immune response compared to primary vaccination, evidenced by a greater: (i) frequency of CD14+CD16+ inflammatory monocytes; (ii) concentration of plasma IFN-g; (iii) transcriptional signature of innate antiviral immunity. Consistent with these observations, single-cell transcriptomics analysis demonstrated a ~100-fold increase in the frequency of a myeloid cell cluster, enriched in interferon-response transcription factors (TFs) and reduced in AP-1 TFs, following secondary immunization. Finally, we identified distinct innate pathways associated with CD8 T cell and nAb responses, and show that a monocyte-related signature correlates with the nAb response against the B.1.351 variant strain. Collectively, these data provide insights into immune responses induced by mRNA vaccination and demonstrate its capacity to prime the innate immune system to mount a more potent response following booster immunization.

    View details for DOI 10.1038/s41586-021-03791-x

    View details for PubMedID 34252919

  • A multi-scale integrated analysis identifies KRT8 as a pan-cancer early biomarker. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing Scott, M. K., Limaye, M., Schaffert, S., West, R., Ozawa, M. G., Chu, P., Nair, V. S., Koong, A. C., Khatri, P. 2021; 26: 297–308

    Abstract

    An early biomarker would transform our ability to screen and treat patients with cancer. The large amount of multi-scale molecular data in public repositories from various cancers provide unprecedented opportunities to find such a biomarker. However, despite identification of numerous molecular biomarkers using these public data, fewer than 1% have proven robust enough to translate into clinical practice. One of the most important factors affecting the successful translation to clinical practice is lack of real-world patient population heterogeneity in the discovery process. Almost all biomarker studies analyze only a single cohort of patients with the same cancer using a single modality. Recent studies in other diseases have demonstrated the advantage of leveraging biological and technical heterogeneity across multiple independent cohorts to identify robust disease biomarkers. Here we analyzed 17149 samples from patients with one of 23 cancers that were profiled using either DNA methylation, bulk and single-cell gene expression, or protein expression in tumor and serum. First, we analyzed DNA methylation profiles of 9855 samples across 23 cancers from The Cancer Genome Atlas (TCGA). We then examined the gene expression profile of the most significantly hypomethylated gene, KRT8, in 6781 samples from 57 independent microarray datasets from NCBI GEO. KRT8 was significantly over-expressed across cancers except colon cancer (summary effect size=1.05; p < 0.0001). Further, single-cell RNAseq analysis of 7447 single cells from lung tumors showed that genes that significantly correlated with KRT8 (p < 0.05) were involved in p53-related pathways. Immunohistochemistry in tumor biopsies from 294 patients with lung cancer showed that high protein expression of KRT8 is a prognostic marker of poor survival (HR = 1.73, p = 0.01). Finally, detectable KRT8 in serum as measured by ELISA distinguished patients with pancreatic cancer from healthy controls with an AUROC=0.94. In summary, our analysis demonstrates that KRT8 is (1) differentially expressed in several cancers across all molecular modalities and (2) may be useful as a biomarker to identify patients that should be further tested for cancer.

    View details for PubMedID 33691026

  • Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science (New York, N.Y.) Arunachalam, P. S., Wimmers, F., Mok, C. K., Perera, R. A., Scott, M., Hagan, T., Sigal, N., Feng, Y., Bristow, L., Tak-Yin Tsang, O., Wagh, D., Coller, J., Pellegrini, K. L., Kazmin, D., Alaaeddine, G., Leung, W. S., Chan, J. M., Chik, T. S., Choi, C. Y., Huerta, C., Paine McCullough, M., Lv, H., Anderson, E., Edupuganti, S., Upadhyay, A. A., Bosinger, S. E., Maecker, H. T., Khatri, P., Rouphael, N., Peiris, M., Pulendran, B. 2020

    Abstract

    COVID-19 represents a global crisis, yet major knowledge gaps remain about human immunity to SARS-CoV-2. We analyzed immune responses in 76 COVID-19 patients and 69 healthy individuals from Hong Kong and Atlanta. In PBMCs of COVID-19 patients, there was reduced expression of HLA-DR and pro-inflammatory cytokines by myeloid cells, and impaired mTOR-signaling and IFN-alpha production by plasmacytoid DCs. In contrast, there were enhanced plasma levels of inflammatory mediators, including EN-RAGE, TNFSF14, and oncostatin-M, which correlated with disease severity and increased bacterial products in human plasma. Single-cell transcriptomics revealed no type-I IFN, reduced HLA-DR in myeloid cells of severe patients, and transient expression of IFN-stimulated genes. This was consistent with bulk PBMC transcriptomics, and transient, low plasma IFN-alpha levels during infection. These results reveal mechanisms and potential therapeutic targets for COVID-19.

    View details for DOI 10.1126/science.abc6261

    View details for PubMedID 32788292

  • T cell-inducing vaccine durably prevents mucosal SHIV infection even with lower neutralizing antibody titers. Nature medicine Arunachalam, P. S., Charles, T. P., Joag, V. n., Bollimpelli, V. S., Scott, M. K., Wimmers, F. n., Burton, S. L., Labranche, C. C., Petitdemange, C. n., Gangadhara, S. n., Styles, T. M., Quarnstrom, C. F., Walter, K. A., Ketas, T. J., Legere, T. n., Jagadeesh Reddy, P. B., Kasturi, S. P., Tsai, A. n., Yeung, B. Z., Gupta, S. n., Tomai, M. n., Vasilakos, J. n., Shaw, G. M., Kang, C. Y., Moore, J. P., Subramaniam, S. n., Khatri, P. n., Montefiori, D. n., Kozlowski, P. A., Derdeyn, C. A., Hunter, E. n., Masopust, D. n., Amara, R. R., Pulendran, B. n. 2020

    Abstract

    Recent efforts toward an HIV vaccine focus on inducing broadly neutralizing antibodies, but eliciting both neutralizing antibodies (nAbs) and cellular responses may be superior. Here, we immunized macaques with an HIV envelope trimer, either alone to induce nAbs, or together with a heterologous viral vector regimen to elicit nAbs and cellular immunity, including CD8+ tissue-resident memory T cells. After ten vaginal challenges with autologous virus, protection was observed in both vaccine groups at 53.3% and 66.7%, respectively. A nAb titer >300 was generally associated with protection but in the heterologous viral vector + nAb group, titers <300 were sufficient. In this group, protection was durable as the animals resisted six more challenges 5 months later. Antigen stimulation of T cells in ex vivo vaginal tissue cultures triggered antiviral responses in myeloid and CD4+ T cells. We propose that cellular immune responses reduce the threshold of nAbs required to confer superior and durable protection.

    View details for DOI 10.1038/s41591-020-0858-8

    View details for PubMedID 32393800

  • Increased monocyte count as a cellular biomarker for poor outcomes in fibrotic diseases: a retrospective, multicentre cohort study LANCET RESPIRATORY MEDICINE Scott, M. D., Quinn, K., Li, Q., Carroll, R., Warsinske, H., Vallania, F., Chen, S., Carns, M. A., Aren, K., Sun, J., Koloms, K., Lee, J., Baral, J., Kropski, J., Zhao, H., Herzog, E., Martinez, F. J., Moore, B. B., Hinchcliff, M., Denny, J., Kaminski, N., Herazo-Maya, J. D., Shah, N. H., Khatri, P. 2019; 7 (6): 497–508
  • CD22 blockade restores homeostatic microglial phagocytosis in ageing brains NATURE Pluvinage, J. V., Haney, M. S., Smith, B. H., Sun, J., Iram, T., Bonanno, L., Li, L., Lee, D. P., Morgens, D. W., Yang, A. C., Shuken, S. R., Gate, D., Scott, M., Khatri, P., Luo, J., Bertozzi, C. R., Bassik, M. C., Wyss-Coray, T. 2019; 568 (7751): 187-+
  • Assessment of Validity of a Blood-Based 3-Gene Signature Score for Progression and Diagnosis of Tuberculosis, Disease Severity, and Treatment Response. JAMA network open Warsinske, H. C., Rao, A. M., Moreira, F. M., Santos, P. C., Liu, A. B., Scott, M., Malherbe, S. T., Ronacher, K., Walzl, G., Winter, J., Sweeney, T. E., Croda, J., Andrews, J. R., Khatri, P. 2018; 1 (6): e183779

    Abstract

    The World Health Organization identified the need for a non-sputum-based triage test to identify those in need of further tuberculosis (TB) testing.To determine whether the 3-gene TB score can be a diagnostic tool throughout the course of TB disease, from latency to diagnosis to treatment response, and posttreatment residual inflammation.This nested case-control study analyzed the 3-gene TB score in 3 cohorts, each focusing on a different stage of TB disease: (1) the Adolescent Cohort Study profiled whole-blood samples from adolescents with latent Mycobacterium tuberculosis infection, some of which progressed to active TB (ATB), using RNA sequencing; (2) the Brazil Active Screen Study collected whole blood from an actively screened case-control cohort of adult inmates from 2 prisons in Mato Grosso do Sul, Brazil, for ATB from January 2016 to February 2016; and (3) the Catalysis Treatment Response Cohort (CTRC) identified culture-positive adults in primary health care clinics in Cape Town, South Africa, from 2005 to 2007 and collected whole blood for RNA sequencing from patients with ATB at diagnosis and weeks 1, 4, and 24. The CTRC patients also had positron emission tomography-computed tomography scans at diagnosis, week 4, and week 24. Analyses were performed from September 2017 to June 2018.A 3-gene messenger RNA expression score, measured by quantitative polymerase chain reaction or RNA sequencing, was evaluated for distinguishing the following: individuals who progressed to ATB from those who did not, individuals with ATB from those without, and individuals with slower treatment response during TB therapy.Patients evaluated in this study included 144 adolescents from the Adolescent Cohort Study (aged 12-18 years; 96 female and 48 male), 81 adult prison inmates from the Brazil Active Screen Study (aged 20-72 years; 81 male), and 138 adult community members from the CTRC (aged 17-64 years; 81 female and 57 male). The 3-gene TB score identified progression from latent M tuberculosis infection to ATB 6 months prior to sputum conversion with 86% sensitivity and 84% specificity (area under the curve [AUC], 0.86; 95% CI, 0.77-0.96) and patients with ATB in the Brazil Active Screen Study cohort (AUC, 0.87; 95% CI, 0.78-0.95) and CTRC (AUC, 0.94; 95% CI, 0.88-0.99). It also identified CTRC patients with failed treatment at the end of treatment (AUC, 0.93; 95% CI, 0.83-1.00). Collectively, across all cohorts, the 3-gene TB score identified patients with ATB with 90% sensitivity, 70% specificity, and 99.3% negative predictive value at 4% prevalence.Across 3 independent prospective cohorts, the 3-gene TB score approaches the World Health Organization target product profile benchmarks for non-sputum-based triage test with high negative predictive value. This gene expression diagnostic approach should be considered for further validation and future implementation.

    View details for DOI 10.1001/jamanetworkopen.2018.3779

    View details for PubMedID 30646264

    View details for PubMedCentralID PMC6324428

  • Higher Baseline Monocyte Count Is Associated with More Extensive Skin Involvement and Higher Mortality in Systemic Sclerosis Mohan, V., Khatri, P., Theodore, S., Charles, J., Hau Pham, Nair, D., Scott, M., Reveille, J. D., Mayes, M. D., Assassi, S. WILEY. 2017
  • META-ANALYSIS OF CONTINUOUS PHENOTYPES IDENTIFIES A GENE SIGNATURE THAT CORRELATES WITH COPD DISEASE STATUS. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing Scott, M., Vallania, F., Khatri, P. 2016; 22: 266-275

    Abstract

    The utility of multi-cohort two-class meta-analysis to identify robust differentially expressed gene signatures has been well established. However, many biomedical applications, such as gene signatures of disease progression, require one-class analysis. Here we describe an R package, MetaCorrelator, that can identify a reproducible transcriptional signature that is correlated with a continuous disease phenotype across multiple datasets. We successfully applied this framework to extract a pattern of gene expression that can predict lung function in patients with chronic obstructive pulmonary disease (COPD) in both peripheral blood mononuclear cells (PBMCs) and tissue. Our results point to a disregulation in the oxidation state of the lungs of patients with COPD, as well as underscore the classically recognized inammatory state that underlies this disease.

    View details for PubMedID 27896981