Bio


Madeleine Udell is Assistant Professor of Management Science and Engineering at Stanford University, with an affiliation with the Institute for Computational and Mathematical Engineering (ICME) and courtesy appointment in Electrical Engineering, and Associate Professor with tenure (on leave) of Operations Research and Information Engineering and Richard and Sybil Smith Sesquicentennial Fellow at Cornell University.
She completed her PhD at Stanford in Computational and Mathematical Engineering and a postdoctoral fellowship at the Center for the Mathematics of Information at Caltech.
Her research aims to accelerate and simplify large-scale data analysis and optimization,
with impact on challenges in healthcare, finance, marketing, operations, and engineering systems design, among others.
Her work in optimization seeks to detect and exploit novel structures,
leading to faster and more memory-efficient algorithms,
automatic proofs of optimality, better complexity guarantees,
and user-friendly optimization solvers and modeling languages.
Her work in machine learning centers on challenges of data preprocessing, interpretability, and causality,
which are critical to practical application in domains with messy data.
Her awards include the Kavli Fellowship (2023), Alfred P. Sloan Research Fellowship (2021), an NSF CAREER award (2020), and an ONR Young Investigator Award (2020).

Academic Appointments


Professional Education


  • BS, Yale University, Mathematics and Physics (2009)
  • PhD, Stanford University, Computational and Mathematical Engineering (2015)

Current Research and Scholarly Interests


Professor Udell develops new techniques to accelerate and automate data science,
with a focus on large-scale optimization and on data preprocessing,
and with applications in medical informatics, engineering system design, and automated machine learning.

2023-24 Courses


Stanford Advisees


All Publications


  • A greedy Galerkin method to efficiently select sensors for linear dynamical systems LINEAR ALGEBRA AND ITS APPLICATIONS Kouri, D. P., Hua, Z., Udell, M. 2023; 679: 275-304
  • Sparse Data Reconstruction, Missing Value and Multiple Imputation through Matrix Factorization SOCIOLOGICAL METHODOLOGY Sengupta, N., Udell, M., Srebro, N., Evans, J. 2023; 53 (1): 72-114
  • Data-Efficient and Interpretable Tabular Anomaly Detection Chang, C., Yoon, J., Arik, S. O., Udell, M., Pfister, T., ACM ASSOC COMPUTING MACHINERY. 2023: 190-201
  • RANDOMIZED NYSTROM PRECONDITIONING SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS Frangella, Z., Tropp, J. A., Udell, M. 2023; 44 (2): 718-752

    View details for DOI 10.1137/21M1466244

    View details for Web of Science ID 001040782500001

  • The Missing Indicator Method: From Low to High Dimensions Van Ness, M., Bosschieter, T. M., Halpin-Gregorio, R., Udell, M., ACM ASSOC COMPUTING MACHINERY. 2023: 5004-5015
  • From Human Days to Machine Seconds: Automatically Answering and Generating Machine Learning Final Exams Drori, I., Zhang, S. J., Shuttleworth, R., Zhang, S., Tyser, K., Chin, Z., Lantigua, P., Surbehera, S., Hunter, G., Austin, D., Tang, L., Hicke, Y., Simhon, S., Karnik, S., Granberry, D., Udell, M., ACM ASSOC COMPUTING MACHINERY. 2023: 3947-3955
  • A strict complementarity approach to error bound and sensitivity of solution of conic programs OPTIMIZATION LETTERS Ding, L., Udell, M. 2022
  • NysADMM: faster composite convex optimization via low-rank approximation Zhao, S., Frangella, Z., Udell, M., Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S. JMLR-JOURNAL MACHINE LEARNING RESEARCH. 2022
  • Online Missing Value Imputation and Change Point Detection with the Gaussian Copula Zhao, Y., Landgrebe, E., Shekhtman, E., Udell, M., Assoc Advancement Artificial Intelligence ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE. 2022: 9199-9207
  • CONTROLBURN: Feature Selection by Sparse Forests Liu, B., Xie, M., Udell, M., ASSOC COMP MACHINERY ASSOC COMPUTING MACHINERY. 2021: 1045-1054
  • Scalable Semidefinite Programming SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE Yurtsever, A., Tropp, J. A., Fercoq, O., Udell, M., Cevher, V. 2021; 3 (1): 171-200

    View details for DOI 10.1137/19M1305045

    View details for Web of Science ID 000646591200007

  • Robust Non-Linear Matrix Factorization for Dictionary Learning, Denoising, and Clustering IEEE TRANSACTIONS ON SIGNAL PROCESSING Fan, J., Yang, C., Udell, M. 2021; 69: 1755-1770
  • RANDOMIZED SKETCHING ALGORITHMS FOR LOW-MEMORY DYNAMIC OPTIMIZATION SIAM JOURNAL ON OPTIMIZATION Muthukumar, R., Kouri, D. P., Udell, M. 2021; 31 (2): 1242-1275

    View details for DOI 10.1137/19M1272561

    View details for Web of Science ID 000674142800007

  • TenIPS: Inverse Propensity Sampling for Tensor Completion Yang, C., Ding, L., Wu, Z., Udell, M., Banerjee, A., Fukumizu, K. MICROTOME PUBLISHING. 2021
  • ON THE SIMPLICITY AND CONDITIONING OF LOW RANK SEMIDEFINITE PROGRAMS SIAM JOURNAL ON OPTIMIZATION Ding, L., Udell, M. 2021; 31 (4): 2614-2637

    View details for DOI 10.1137/20M1346262

    View details for Web of Science ID 000738355700007

  • An Optimal-Storage Approach to Semidefinite Programming Using Approximate Complementarity SIAM JOURNAL ON OPTIMIZATION Ding, L., Yurtsever, A., Cevher, V., Tropp, J. A., Udell, M. 2021; 31 (4): 2695-2725

    View details for DOI 10.1137/19M1244603

    View details for Web of Science ID 000738355700010

  • Dynamic Assortment Personalization in High Dimensions OPERATIONS RESEARCH Kallus, N., Udell, M. 2020; 68 (4): 1020-1037
  • Low-Rank Tucker Approximation of a Tensor from Streaming Data SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE Sun, Y., Guo, Y., Luo, C., Tropp, J., Udell, M. 2020; 2 (4): 1123-1150

    View details for DOI 10.1137/19M1257718

    View details for Web of Science ID 000646588300008

  • AutoML Pipeline Selection: Efficiently Navigating the Combinatorial Space Yang, C., Fan, J., Wu, Z., Udell, M., ASSOC COMP MACHINERY ASSOC COMPUTING MACHINERY. 2020: 1446-1456
  • Missing Value Imputation for Mixed Data via Gaussian Copula Zhao, Y., Udell, M., ASSOC COMP MACHINERY ASSOC COMPUTING MACHINERY. 2020: 636-646
  • Polynomial Matrix Completion for Missing Data Imputation and Transductive Learning Fan, J., Zhang, Y., Udell, M., Assoc Advancement Artificial Intelligence ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE. 2020: 3842-3849
  • Optimal Design of Efficient Rooftop Photovoltaic Arrays INFORMS JOURNAL ON APPLIED ANALYTICS Udell, M., Toole, O. 2019; 49 (4): 281-294
  • Optimal Design of Efficient Rooftop Photovoltaic Arrays INFORMS JOURNAL ON APPLIED ANALYTICS Udell, M., Toole, O. 2019; 49 (4): 293-294
  • Factor Group-Sparse Regularization for Efficient Low-Rank Matrix Recovery Fan, J., Ding, L., Chen, Y., Udell, M., Wallach, H., Larochelle, H., Beygelzimer, A., d'Alche-Buc, F., Fox, E., Garnett, R. NEURAL INFORMATION PROCESSING SYSTEMS (NIPS). 2019
  • Why Are Big Data Matrices Approximately Low Rank? SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE Udell, M., Townsend, A. 2019; 1 (1): 144-160

    View details for DOI 10.1137/18M1183480

    View details for Web of Science ID 000646577600007

  • Fairness Under Unawareness: Assessing Disparity When Protected Class Is Unobserved Chen, J., Kallus, N., Mao, X., Svacha, G., Udell, M., Assoc Comp Machinery ASSOC COMPUTING MACHINERY. 2019: 339-348
  • STREAMING LOW-RANK MATRIX APPROXIMATION WITH AN APPLICATION TO SCIENTIFIC SIMULATION SIAM JOURNAL ON SCIENTIFIC COMPUTING Tropp, J. A., Yurtsever, A., Udell, M., Cevher, V. 2019; 41 (4): A2430-A2463

    View details for DOI 10.1137/18M1201068

    View details for Web of Science ID 000483924100015

  • OBOE: Collaborative Filtering for AutoML Model Selection Yang, C., Akimoto, Y., Kim, D., Udell, M., Assoc Comp Machinery ASSOC COMPUTING MACHINERY. 2019: 1173-1183
  • Online high rank matrix completion Fan, J., Udell, M., IEEE Comp Soc IEEE. 2019: 8682-8690
  • Causal Inference with Noisy and Missing Covariates via Matrix Factorization Kallus, N., Mao, X., Udell, M., Bengio, S., Wallach, H., Larochelle, H., Grauman, K., CesaBianchi, N., Garnett, R. NEURAL INFORMATION PROCESSING SYSTEMS (NIPS). 2018
  • Frank-Wolfe Style Algorithms for Large Scale Optimization LARGE-SCALE AND DISTRIBUTED OPTIMIZATION Ding, L., Udell, M., Giselsson, P., Rantzer, A. 2018; 2227: 215-245
  • Limited memory Kelley's Method Converges for Composite Convex and Submodular Objectives Zhou, S., Gupta, S., Udell, M., Bengio, S., Wallach, H., Larochelle, H., Grauman, K., CesaBianchi, N., Garnett, R. NEURAL INFORMATION PROCESSING SYSTEMS (NIPS). 2018
  • Disciplined Multi-Convex Programming Shen, X., Diamond, S., Udell, M., Gu, Y., Boyd, S., IEEE IEEE. 2017: 895–900
  • Graph-Regularized Generalized Low-Rank Models Paradkar, M., Udell, M., IEEE IEEE. 2017: 1921-1926
  • PRACTICAL SKETCHING ALGORITHMS FOR LOW-RANK MATRIX APPROXIMATION SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS Tropp, J. A., Yurtsever, A., Udell, M., Cevher, V. 2017; 38 (4): 1454-1485

    View details for DOI 10.1137/17M1111590

    View details for Web of Science ID 000418665600017

  • Sketchy Decisions: Convex Low-Rank Matrix Optimization with Optimal Storage Yurtsever, A., Udell, M., Tropp, J. A., Cevher, V., Singh, A., Zhu, J. MICROTOME PUBLISHING. 2017: 1188-1196
  • Fixed-Rank Approximation of a Positive-Semidefinite Matrix from Streaming Data Tropp, J. A., Yurtsever, A., Udell, M., Cevher, V., Guyon, Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. NEURAL INFORMATION PROCESSING SYSTEMS (NIPS). 2017
  • Bounding duality gap for separable problems with linear constraints COMPUTATIONAL OPTIMIZATION AND APPLICATIONS Udell, M., Boyd, S. 2016; 64 (2): 355-378
  • DISCOVERING PATIENT PHENOTYPES USING GENERALIZED LOW RANK MODELS. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing Schuler, A., Liu, V., Wan, J., Callahan, A., Udell, M., Stark, D. E., Shah, N. H. 2016; 21: 144-155

    Abstract

    The practice of medicine is predicated on discovering commonalities or distinguishing characteristics among patients to inform corresponding treatment. Given a patient grouping (hereafter referred to as a phenotype), clinicians can implement a treatment pathway accounting for the underlying cause of disease in that phenotype. Traditionally, phenotypes have been discovered by intuition, experience in practice, and advancements in basic science, but these approaches are often heuristic, labor intensive, and can take decades to produce actionable knowledge. Although our understanding of disease has progressed substantially in the past century, there are still important domains in which our phenotypes are murky, such as in behavioral health or in hospital settings. To accelerate phenotype discovery, researchers have used machine learning to find patterns in electronic health records, but have often been thwarted by missing data, sparsity, and data heterogeneity. In this study, we use a flexible framework called Generalized Low Rank Modeling (GLRM) to overcome these barriers and discover phenotypes in two sources of patient data. First, we analyze data from the 2010 Healthcare Cost and Utilization Project National Inpatient Sample (NIS), which contains upwards of 8 million hospitalization records consisting of administrative codes and demographic information. Second, we analyze a small (N=1746), local dataset documenting the clinical progression of autism spectrum disorder patients using granular features from the electronic health record, including text from physician notes. We demonstrate that low rank modeling successfully captures known and putative phenotypes in these vastly different datasets.

    View details for PubMedID 26776181

  • Revealed Preference at Scale: Learning Personalized Preferences from Assortment Choices Kallus, N., Udell, M., ACM ASSOC COMPUTING MACHINERY. 2016: 821-837
  • The Sound of APALM Clapping: Faster Nonsmooth Nonconvex Optimization with Stochastic Asynchronous PALM Davis, D., Udell, M., Edmunds, B., Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, Garnett, R. NEURAL INFORMATION PROCESSING SYSTEMS (NIPS). 2016
  • Introduction FOUNDATIONS AND TRENDS IN MACHINE LEARNING Udell, M., Horn, C., Zadeh, R., Boyd, S. 2016; 9 (1): 2-+

    View details for DOI 10.1561/2200000055

    View details for Web of Science ID 000383972700001

  • FACTORIZATION FOR ANALOG-TO-DIGITAL MATRIX MULTIPLICATION Lee, E. H., Udell, M., Wong, S., IEEE IEEE. 2015: 1061–65
  • Revenue Maximization for Broadband Service Providers Using Revenue Capacity Mehmood, H., Udell, M., Cioffi, J., IEEE IEEE. 2015
  • Incorporation of flexible objectives and time-linked simulation with flux balance analysis. Journal of theoretical biology Birch, E. W., Udell, M., Covert, M. W. 2014; 345: 12-21

    Abstract

    We present two modifications of the flux balance analysis (FBA) metabolic modeling framework which relax implicit assumptions of the biomass reaction. Our flexible flux balance analysis (flexFBA) objective removes the fixed proportion between reactants, and can therefore produce a subset of biomass reactants. Our time-linked flux balance analysis (tFBA) simulation removes the fixed proportion between reactants and byproducts, and can therefore describe transitions between metabolic steady states. Used together, flexFBA and tFBA model a time scale shorter than the regulatory and growth steady state encoded by the biomass reaction. This combined short-time FBA method is intended for integrated modeling applications to enable detailed and dynamic depictions of microbial physiology such as whole-cell modeling. For example, when modeling Escherichia coli, it avoids artifacts caused by low-copy-number enzymes in single-cell models with kinetic bounds. Even outside integrated modeling contexts, the detailed predictions of flexFBA and tFBA complement existing FBA techniques. We show detailed metabolite production of in silico knockouts used to identify when correct essentiality predictions are made for the wrong reason.

    View details for DOI 10.1016/j.jtbi.2013.12.009

    View details for PubMedID 24361328

    View details for PubMedCentralID PMC3933926

  • Analyzing patterns of drug use in clinical notes for patient safety. AMIA Summits on Translational Science proceedings AMIA Summit on Translational Science LePendu, P., Liu, Y., Iyer, S., Udell, M. R., Shah, N. H. 2012; 2012: 63-70

    Abstract

    Doctors prescribe drugs for indications that are not FDA approved. Research indicates that 21% of prescriptions filled are for off-label indications. Of those, more than 73% lack supporting scientific evidence. Traditional drug safety alerts may not cover usages that are not FDA approved. Therefore, analyzing patterns of off-label drug usage in the clinical setting is an important step toward reducing the incidence of adverse events and for improving patient safety. We applied term extraction tools on the clinical notes of a million patients to compile a database of statistically significant patterns of drug use. We validated some of the usage patterns learned from the data against sources of known on-label and off-label use. Given our ability to quantify adverse event risks using the clinical notes, this will enable us to address patient safety because we can now rank-order off-label drug use and prioritize the search for their adverse event profiles.

    View details for PubMedID 22779054