All Publications

  • Electro-thermal Characterization of Dynamical VO2 Memristors via Local Activity Modeling. Advanced materials (Deerfield Beach, Fla.) Brown, T. D., Bohaichuk, S. M., Islam, M., Kumar, S., Pop, E., Williams, R. S. 2022: e2205451


    Translating the surging interest in neuromorphic electronic components, such as those based on nonlinearities near Mott transitions, into large-scale commercial deployment faces steep challenges in the current lack of means to identify and design key material parameters. These issues are exemplified by the difficulties in connecting measurable material properties to device behavior via circuit element models. Here we use the principle of Local Activity to build a model of VO2 / SiN Mott threshold switches by sequentially accounting for constraints from a minimal set of quasi-static and dynamic electrical and high spatial resolution thermal data obtained via in-situ thermoreflectance mapping. By combining independent data sets for devices with varying dimensions, we distill the model to measurable material properties and established device scaling laws. The model can accurately predict electrical and thermal conductivities and capacitances and locally active dynamics (especially persistent spiking self-oscillations). The systematic procedure by which we develop this model has been a missing link in predictively connecting neuromorphic device behavior with their underlying material properties, and should enable rapid screening of material candidates before employing expensive manufacturing processes and testing procedures. This article is protected by copyright. All rights reserved.

    View details for DOI 10.1002/adma.202205451

    View details for PubMedID 36165218

  • Lateral electrical transport and field-effect characteristics of sputtered p-type chalcogenide thin films APPLIED PHYSICS LETTERS Wahid, S., Daus, A., Khan, A., Chen, V., Neilson, K. M., Islam, M., Chen, M. E., Pop, E. 2021; 119 (23)

    View details for DOI 10.1063/5.0063759

    View details for Web of Science ID 000729364800005

  • First-principles calculation of the optoelectronic properties of doped methylammonium lead halide perovskites: A DFT-based study COMPUTATIONAL MATERIALS SCIENCE Rahman, N., Adnaan, M., Adhikary, D., Islam, M., Alam, M. 2018; 150: 439-447
  • Transfer Matrix Formalism-Based Analytical Modeling and Performance Evaluation of Perovskite Solar Cells IEEE TRANSACTIONS ON ELECTRON DEVICES Wahid, S., Islam, M., Rahman, M., Alam, M. 2017; 64 (12): 5034-5041
  • Effect of spatial distribution of generation rate on bulk heterojunction organic solar cell performance: A novel semi-analytical approach ORGANIC ELECTRONICS Islam, M., Wahid, S., Chowdhury, M., Hakim, F., Alam, M. 2017; 46: 226-241
  • Physics-based modeling and performance analysis of dual junction perovskite/silicon tandem solar cells PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE Islam, M., Wahid, S., Alam, M. 2017; 214 (2)