Academic Appointments


  • Basic Life Science Research Associate, Biology

2019-20 Courses


All Publications


  • Visualizing the metazoan proliferation-quiescence decision in vivo. eLife Adikes, R. C., Kohrman, A. Q., Martinez, M. A., Palmisano, N. J., Smith, J. J., Medwig-Kinney, T. N., Min, M., Sallee, M. D., Ahmed, O. B., Kim, N., Liu, S., Morabito, R. D., Weeks, N., Zhao, Q., Zhang, W., Feldman, J. L., Barkoulas, M., Pani, A. M., Spencer, S. L., Martin, B. L., Matus, D. Q. 2020; 9

    Abstract

    Cell proliferation and quiescence are intimately coordinated during metazoan development. Here, we adapt a cyclin-dependent kinase (CDK) sensor to uncouple these key events of the cell cycle in C. elegans and zebrafish through live-cell imaging. The CDK sensor consists of a fluorescently tagged CDK substrate that steadily translocates from the nucleus to the cytoplasm in response to increasing CDK activity and consequent sensor phosphorylation. We show that the CDK sensor can distinguish cycling cells in G1 from quiescent cells in G0, revealing a possible commitment point and a cryptic stochasticity in an otherwise invariant C. elegans cell lineage. Finally, we derive a predictive model of future proliferation behavior in C. elegans based on a snapshot of CDK activity in newly born cells. Thus, we introduce a live-cell imaging tool to facilitate in vivo studies of cell cycle control in a wide-range of developmental contexts.

    View details for DOI 10.7554/eLife.63265

    View details for PubMedID 33350383

  • Visualizing the metazoan proliferation-quiescence decision in vivo ELIFE Adikes, R. C., Kohrman, A. Q., Martinez, M. Q., Palmisano, N. J., Smith, J. J., Medwig-Kinney, T. N., Min, M., Sallee, M. D., Ahmed, O. B., Kim, N., Liu, S., Morabito, R. D., Weeks, N., Zhao, Q., Zhang, W., Feldman, J. L., Barkoulas, M., Pani, A. M., Spencer, S. L., Martin, B. L., Matus, D. Q. 2020; 9
  • Growth cone-localized microtubule organizing center establishes microtubule orientation in dendrites. eLife Liang, X., Kokes, M., Fetter, R. D., Sallee, M. D., Moore, A. W., Feldman, J. L., Shen, K. 2020; 9

    Abstract

    A polarized arrangement of neuronal microtubule arrays is the foundation of membrane trafficking and subcellular compartmentalization. Conserved among both invertebrates and vertebrates, axons contain exclusively 'plus-end-out' microtubules while dendrites contain a high percentage of 'minus-end-out' microtubules, the origins of which have been a mystery. Here we show that in Caenorhabditis elegans the dendritic growth cone contains a non-centrosomal microtubule organizing center, which generates minus-end-out microtubules along outgrowing dendrites and plus-end-out microtubules in the growth cone. RAB-11-positive endosomes accumulate in this region and co-migrate with the microtubule nucleation complex gamma-TuRC. The MTOC tracks the extending growth cone by kinesin-1/UNC-116-mediated endosome movements on distal plus-end-out microtubules and dynein clusters this advancing MTOC. Critically, perturbation of the function or localization of the MTOC causes reversed microtubule polarity in dendrites. These findings unveil the endosome-localized dendritic MTOC as a critical organelle for establishing axon-dendrite polarity.

    View details for DOI 10.7554/eLife.56547

    View details for PubMedID 32657271

  • Tissue-specific degradation of essential centrosome components reveals distinct microtubule populations at microtubule organizing centers. PLoS biology Sallee, M. D., Zonka, J. C., Skokan, T. D., Raftrey, B. C., Feldman, J. L. 2018; 16 (8): e2005189

    Abstract

    Non-centrosomal microtubule organizing centers (ncMTOCs) are found in most differentiated cells, but how these structures regulate microtubule organization and dynamics is largely unknown. We optimized a tissue-specific degradation system to test the role of the essential centrosomal microtubule nucleators gamma-tubulin ring complex (gamma-TuRC) and AIR-1/Aurora A at the apical ncMTOC, where they both localize in Caenorhabditis elegans embryonic intestinal epithelial cells. As at the centrosome, the core gamma-TuRC component GIP-1/GCP3 is required to recruit other gamma-TuRC components to the apical ncMTOC, including MZT-1/MZT1, characterized here for the first time in animal development. In contrast, AIR-1 and MZT-1 were specifically required to recruit gamma-TuRC to the centrosome, but not to centrioles or to the apical ncMTOC. Surprisingly, microtubules remain robustly organized at the apical ncMTOC upon gamma-TuRC and AIR-1 co-depletion, and upon depletion of other known microtubule regulators, including TPXL-1/TPX2, ZYG-9/ch-TOG, PTRN-1/CAMSAP, and NOCA-1/Ninein. However, loss of GIP-1 removed a subset of dynamic EBP-2/EB1-marked microtubules, and the remaining dynamic microtubules grew faster. Together, these results suggest that different microtubule organizing centers (MTOCs) use discrete proteins for their function, and that the apical ncMTOC is composed of distinct populations of gamma-TuRC-dependent and -independent microtubules that compete for a limited pool of resources.

    View details for PubMedID 30080857

  • Flipping the switch: regulating MTOC location. Cell cycle (Georgetown, Tex.) Sallee, M. D., Feldman, J. L. 2015; 14 (22): 3519–20

    View details for PubMedID 26375186

    View details for PubMedCentralID PMC4825708