Marie Faye La Russa
Basic Life Science Research Associate, Bioengineering
Academic Appointments
-
Basic Life Science Research Associate, Bioengineering
All Publications
-
Broad-spectrum CRISPR-mediated inhibition of SARS-CoV-2 variants and endemic coronaviruses in vitro.
Nature communications
2022; 13 (1): 2766
Abstract
A major challenge in coronavirus vaccination and treatment is to counteract rapid viral evolution and mutations. Here we demonstrate that CRISPR-Cas13d offers a broad-spectrum antiviral (BSA) to inhibit many SARS-CoV-2 variants and diverse human coronavirus strains with >99% reduction of the viral titer. We show that Cas13d-mediated coronavirus inhibition is dependent on the crRNA cellular spatial colocalization with Cas13d and target viral RNA. Cas13d can significantly enhance the therapeutic effects of diverse small molecule drugs against coronaviruses for prophylaxis or treatment purposes, and the best combination reduced viral titer by over four orders of magnitude. Using lipid nanoparticle-mediated RNA delivery, we demonstrate that the Cas13d system can effectively treat infection from multiple variants of coronavirus, including Omicron SARS-CoV-2, in human primary airway epithelium air-liquid interface (ALI) cultures. Our study establishes CRISPR-Cas13 as a BSA which is highly complementary to existing vaccination and antiviral treatment strategies.
View details for DOI 10.1038/s41467-022-30546-7
View details for PubMedID 35589813
-
A comprehensive analysis and resource to use CRISPR-Cas13 for broad-spectrum targeting of RNA viruses.
Cell reports. Medicine
2021: 100245
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 and variants has led to significant mortality. We recently reported that an RNA-targeting CRISPR-Cas13 system, termed prophylactic antiviral CRISPR in human (PAC-MAN), offered an antiviral strategy against SARS-CoV-2 and influenza A virus. Here, we expand in silico analysis to use PAC-MAN to target a broad spectrum of human- or livestock-infectious RNA viruses with high specificity, coverage, and predicted efficiency. Our analysis reveals that a minimal set of 14 crRNAs is able to target >90% of human-infectious viruses across 10 RNA virus families. We predict that a set of 5 experimentally validated crRNAs can target new SARS-CoV-2 variant sequences with zero mismatches. We also build an online resource (crispr-pacman.stanford.edu) to support community use of CRISPR-Cas13 for broad-spectrum RNA virus targeting. Our work provides a new bioinformatic resource for using CRISPR-Cas13 to target diverse RNA viruses in order to facilitate development of CRISPR-based antivirals.
View details for DOI 10.1016/j.xcrm.2021.100245
View details for PubMedID 33778788
-
Computational Methods for Analysis of Large-Scale CRISPR Screens
ANNUAL REVIEW OF BIOMEDICAL DATA SCIENCE, VOL 3, 2020
2020; 3: 137–62
View details for DOI 10.1146/annurev-biodatasci-020520-113523
View details for Web of Science ID 000613910200006
-
Development of CRISPR as an Antiviral Strategy to Combat SARS-CoV-2 and Influenza.
Cell
2020
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the SARS-CoV-2 virus, has highlighted the need for antiviral approaches that can target emerging viruses with no effective vaccines or pharmaceuticals. Here, we demonstrate a CRISPR-Cas13-based strategy, PAC-MAN (prophylactic antiviral CRISPR in human cells), for viral inhibition that can effectively degrade RNA from SARS-CoV-2 sequences and live influenza A virus (IAV) in human lung epithelial cells. We designed and screened CRISPR RNAs (crRNAs) targeting conserved viral regions and identified functional crRNAs targeting SARS-CoV-2. This approach effectively reduced H1N1 IAV load in respiratory epithelial cells. Our bioinformatic analysis showed that a group of only six crRNAs can target more than 90% of all coronaviruses. With the development of a safe and effective system for respiratory tract delivery, PAC-MAN has the potential to become an important pan-coronavirus inhibition strategy.
View details for DOI 10.1016/j.cell.2020.04.020
View details for PubMedID 32353252
-
Anti-CRISPR-mediated control of gene editing and synthetic circuits in eukaryotic cells.
Nature communications
2019; 10 (1): 194
Abstract
Repurposed CRISPR-Cas molecules provide a useful tool set for broad applications of genomic editing and regulation of gene expression in prokaryotes and eukaryotes. Recent discovery of phage-derived proteins, anti-CRISPRs, which serve to abrogate natural CRISPR anti-phage activity, potentially expands the ability to build synthetic CRISPR-mediated circuits. Here, we characterize a panel of anti-CRISPR molecules for expanded applications to counteract CRISPR-mediated gene activation and repression of reporter and endogenous genes in various cell types. We demonstrate that cells pre-engineered with anti-CRISPR molecules become resistant to gene editing, thus providing a means to generate "write-protected" cells that prevent future gene editing. We further show that anti-CRISPRs can be used to control CRISPR-based gene regulation circuits, including implementation of a pulse generator circuit in mammalian cells. Our work suggests that anti-CRISPR proteins should serve as widely applicable tools for synthetic systems regulating the behavior of eukaryotic cells.
View details for PubMedID 30643127
-
CRISPR-mediated live imaging of genome editing and transcription.
Science (New York, N.Y.)
2019
Abstract
We report a robust, versatile approach named CRISPR Live-cell fluorescent in situ hybridization (LiveFISH) using fluorescent oligos for genome tracking in broad cell types including primary cells. An intrinsic stability switch of CRISPR guide RNAs enables LiveFISH to accurately detect chromosomal disorders such as Patau Syndrome in prenatal amniotic fluid cells and track multiple loci in human T lymphocytes. In addition, LiveFISH tracks the real-time movement of DNA double-strand breaks induced by CRISPR-Cas9-mediated editing and consequent chromosome translocations. Finally, combining Cas9 and Cas13 systems, LiveFISH allows for simultaneous visualization of genomic DNA and RNA transcripts in living cells. The LiveFISH approach enables real-time live imaging of DNA and RNA during genome editing, transcription, and rearrangements in single cells.
View details for DOI 10.1126/science.aax7852
View details for PubMedID 31488703
-
CRISPR-Mediated Programmable 3D Genome Positioning and Nuclear Organization.
Cell
2018
Abstract
Programmable control of spatial genome organization is a powerful approach for studying how nuclear structure affects gene regulation and cellular function. Here, we develop a versatile CRISPR-genome organization (CRISPR-GO) system that can efficiently control the spatial positioning of genomic loci relative to specific nuclear compartments, including the nuclear periphery, Cajal bodies, and promyelocytic leukemia (PML) bodies. CRISPR-GO is chemically inducible and reversible, enabling interrogation of real-time dynamics of chromatin interactions with nuclear compartments in living cells. Inducible repositioning of genomic loci to the nuclear periphery allows for dissection of mitosis-dependent and -independent relocalization events and also for interrogation of the relationship between gene position and gene expression. CRISPR-GO mediates rapid de novo formation of Cajal bodies at desired chromatin loci and causes significant repression of endogenous gene expression over long distances (30-600 kb). The CRISPR-GO system offers a programmable platform to investigate large-scale spatial genome organization and function.
View details for PubMedID 30318144
-
CRISPR/Cas9 in Genome Editing and Beyond
ANNUAL REVIEW OF BIOCHEMISTRY, VOL 85
2016; 85: 227-264
Abstract
The Cas9 protein (CRISPR-associated protein 9), derived from type II CRISPR (clustered regularly interspaced short palindromic repeats) bacterial immune systems, is emerging as a powerful tool for engineering the genome in diverse organisms. As an RNA-guided DNA endonuclease, Cas9 can be easily programmed to target new sites by altering its guide RNA sequence, and its development as a tool has made sequence-specific gene editing several magnitudes easier. The nuclease-deactivated form of Cas9 further provides a versatile RNA-guided DNA-targeting platform for regulating and imaging the genome, as well as for rewriting the epigenetic status, all in a sequence-specific manner. With all of these advances, we have just begun to explore the possible applications of Cas9 in biomedical research and therapeutics. In this review, we describe the current models of Cas9 function and the structural and biochemical studies that support it. We focus on the applications of Cas9 for genome editing, regulation, and imaging, discuss other possible applications and some technical considerations, and highlight the many advantages that CRISPR/Cas9 technology offers.
View details for DOI 10.1146/annurev-biochem-060815-014607
View details for PubMedID 27145843
-
The New State of the Art: Cas9 for Gene Activation and Repression
MOLECULAR AND CELLULAR BIOLOGY
2015; 35 (22): 3800-3809
Abstract
CRISPR-Cas9 technology has rapidly changed the landscape for how biologists and bioengineers study and manipulate the genome. Derived from the bacterial adaptive immune system, CRISPR-Cas9 has been coopted and repurposed for a variety of new functions, including the activation or repression of gene expression (termed CRISPRa or CRISPRi, respectively). This represents an exciting alternative to previously used repression or activation technologies such as RNA interference (RNAi) or the use of gene overexpression vectors. We have only just begun exploring the possibilities that CRISPR technology offers for gene regulation and the control of cell identity and behavior. In this review, we describe the recent advances of CRISPR-Cas9 technology for gene regulation and outline advantages and disadvantages of CRISPRa and CRISPRi (CRISPRa/i) relative to alternative technologies.
View details for DOI 10.1128/MCB.00512-15
View details for PubMedID 26370509
View details for PubMedCentralID PMC4609748
-
Small Molecules Enhance CRISPR Genome Editing in Pluripotent Stem Cells.
Cell stem cell
2015; 16 (2): 142-147
Abstract
The bacterial CRISPR-Cas9 system has emerged as an effective tool for sequence-specific gene knockout through non-homologous end joining (NHEJ), but it remains inefficient for precise editing of genome sequences. Here we develop a reporter-based screening approach for high-throughput identification of chemical compounds that can modulate precise genome editing through homology-directed repair (HDR). Using our screening method, we have identified small molecules that can enhance CRISPR-mediated HDR efficiency, 3-fold for large fragment insertions and 9-fold for point mutations. Interestingly, we have also observed that a small molecule that inhibits HDR can enhance frame shift insertion and deletion (indel) mutations mediated by NHEJ. The identified small molecules function robustly in diverse cell types with minimal toxicity. The use of small molecules provides a simple and effective strategy to enhance precise genome engineering applications and facilitates the study of DNA repair mechanisms in mammalian cells.
View details for DOI 10.1016/j.stem.2015.01.003
View details for PubMedID 25658371
View details for PubMedCentralID PMC4461869
-
Engineering Complex Synthetic Transcriptional Programs with CRISPR RNA Scaffolds
CELL
2015; 160 (1-2): 339-350
Abstract
Eukaryotic cells execute complex transcriptional programs in which specific loci throughout the genome are regulated in distinct ways by targeted regulatory assemblies. We have applied this principle to generate synthetic CRISPR-based transcriptional programs in yeast and human cells. By extending guide RNAs to include effector protein recruitment sites, we construct modular scaffold RNAs that encode both target locus and regulatory action. Sets of scaffold RNAs can be used to generate synthetic multigene transcriptional programs in which some genes are activated and others are repressed. We apply this approach to flexibly redirect flux through a complex branched metabolic pathway in yeast. Moreover, these programs can be executed by inducing expression of the dCas9 protein, which acts as a single master regulatory control point. CRISPR-associated RNA scaffolds provide a powerful way to construct synthetic gene expression programs for a wide range of applications, including rewiring cell fates or engineering metabolic pathways.
View details for DOI 10.1016/j.cell.2014.11.052
View details for Web of Science ID 000347923200029
View details for PubMedID 25533786