Professional Education


  • Doctor of Science, Julius Maximilians Univsitat (2018)
  • Diplom, Julius Maximilians Univsitat (2011)

Stanford Advisors


All Publications


  • A data-driven health index for neonatal morbidities. iScience De Francesco, D., Blumenfeld, Y. J., Maric, I., Mayo, J. A., Chang, A. L., Fallahzadeh, R., Phongpreecha, T., Butwick, A. J., Xenochristou, M., Phibbs, C. S., Bidoki, N. H., Becker, M., Culos, A., Espinosa, C., Liu, Q., Sylvester, K. G., Gaudilliere, B., Angst, M. S., Stevenson, D. K., Shaw, G. M., Aghaeepour, N. 2022; 25 (4): 104143

    Abstract

    Whereas prematurity is a major cause of neonatal mortality, morbidity, and lifelong impairment, the degree of prematurity is usually defined by the gestational age (GA) at delivery rather than by neonatal morbidity. Here we propose a multi-task deep neural network model that simultaneously predicts twelve neonatal morbidities, as the basis for a new data-driven approach to define prematurity. Maternal demographics, medical history, obstetrical complications, and prenatal fetal findings were obtained from linked birth certificates and maternal/infant hospitalization records for 11,594,786 livebirths in California from 1991 to 2012. Overall, our model outperformed traditional models to assess prematurity which are based on GA and/or birthweight (area under the precision-recall curve was 0.326 for our model, 0.229 for GA, and 0.156 for small for GA). These findings highlight the potential of using machine learning techniques to predict multiple prematurity phenotypes and inform clinical decisions to prevent, diagnose and treat neonatal morbidities.

    View details for DOI 10.1016/j.isci.2022.104143

    View details for PubMedID 35402862

  • Single-synapse analyses of Alzheimer's disease implicate pathologic tau, DJ1, CD47, and ApoE. Science advances Phongpreecha, T., Gajera, C. R., Liu, C. C., Vijayaragavan, K., Chang, A. L., Becker, M., Fallahzadeh, R., Fernandez, R., Postupna, N., Sherfield, E., Tebaykin, D., Latimer, C., Shively, C. A., Register, T. C., Craft, S., Montine, K. S., Fox, E. J., Poston, K. L., Keene, C. D., Angelo, M., Bendall, S. C., Aghaeepour, N., Montine, T. J. 1800; 7 (51): eabk0473

    Abstract

    [Figure: see text].

    View details for DOI 10.1126/sciadv.abk0473

    View details for PubMedID 34910503

  • Multi-Omic, Longitudinal Profile of Third-Trimester Pregnancies Identifies a Molecular Switch That Predicts the Onset of Labor. Stelzer, I., Ghaemi, M., Han, X., Ando, K., Hedou, J., Feyaerts, D., Peterson, L., Ganio, E., Tsai, A., Tsai, E., Rumer, K., Stanley, N., Fallazadeh, R., Becker, M., Culos, A., Gaudilliere, D., Wong, R., Winn, V., Shaw, G., Snyder, M., Stevenson, D., Contrepois, K., Angst, M., Aghaeepour, N., Gaudilliere, B. SPRINGER HEIDELBERG. 2021: 233A-234A
  • Integrated trajectories of the maternal metabolome, proteome, and immunome predict labor onset. Science translational medicine Stelzer, I. A., Ghaemi, M. S., Han, X., Ando, K., Hedou, J. J., Feyaerts, D., Peterson, L. S., Rumer, K. K., Tsai, E. S., Ganio, E. A., Gaudilliere, D. K., Tsai, A. S., Choisy, B., Gaigne, L. P., Verdonk, F., Jacobsen, D., Gavasso, S., Traber, G. M., Ellenberger, M., Stanley, N., Becker, M., Culos, A., Fallahzadeh, R., Wong, R. J., Darmstadt, G. L., Druzin, M. L., Winn, V. D., Gibbs, R. S., Ling, X. B., Sylvester, K., Carvalho, B., Snyder, M. P., Shaw, G. M., Stevenson, D. K., Contrepois, K., Angst, M. S., Aghaeepour, N., Gaudilliere, B. 2021; 13 (592)

    Abstract

    Estimating the time of delivery is of high clinical importance because pre- and postterm deviations are associated with complications for the mother and her offspring. However, current estimations are inaccurate. As pregnancy progresses toward labor, major transitions occur in fetomaternal immune, metabolic, and endocrine systems that culminate in birth. The comprehensive characterization of maternal biology that precedes labor is key to understanding these physiological transitions and identifying predictive biomarkers of delivery. Here, a longitudinal study was conducted in 63 women who went into labor spontaneously. More than 7000 plasma analytes and peripheral immune cell responses were analyzed using untargeted mass spectrometry, aptamer-based proteomic technology, and single-cell mass cytometry in serial blood samples collected during the last 100 days of pregnancy. The high-dimensional dataset was integrated into a multiomic model that predicted the time to spontaneous labor [R = 0.85, 95% confidence interval (CI) [0.79 to 0.89], P = 1.2 * 10-40, N = 53, training set; R = 0.81, 95% CI [0.61 to 0.91], P = 3.9 * 10-7, N = 10, independent test set]. Coordinated alterations in maternal metabolome, proteome, and immunome marked a molecular shift from pregnancy maintenance to prelabor biology 2 to 4 weeks before delivery. A surge in steroid hormone metabolites and interleukin-1 receptor type 4 that preceded labor coincided with a switch from immune activation to regulation of inflammatory responses. Our study lays the groundwork for developing blood-based methods for predicting the day of labor, anchored in mechanisms shared in preterm and term pregnancies.

    View details for DOI 10.1126/scitranslmed.abd9898

    View details for PubMedID 33952678

  • Risk assessment analysis for maternal autoantibody-related autism (MAR-ASD): a subtype of autism. Molecular psychiatry Ramirez-Celis, A. n., Becker, M. n., Nuño, M. n., Schauer, J. n., Aghaeepour, N. n., Van de Water, J. n. 2021

    Abstract

    The incidence of autism spectrum disorder (ASD) has been rising, however ASD-risk biomarkers remain lacking. We previously identified the presence of maternal autoantibodies to fetal brain proteins specific to ASD, now termed maternal autoantibody-related (MAR) ASD. The current study aimed to create and validate a serological assay to identify ASD-specific maternal autoantibody patterns of reactivity against eight previously identified proteins (CRMP1, CRMP2, GDA, NSE, LDHA, LDHB, STIP1, and YBOX) that are highly expressed in developing brain, and determine the relationship of these reactivity patterns with ASD outcome severity. We used plasma from mothers of children diagnosed with ASD (n = 450) and from typically developing children (TD, n = 342) to develop an ELISA test for each of the protein antigens. We then determined patterns of reactivity a highly significant association with ASD, and discovered several patterns that were ASD-specific (18% in the training set and 10% in the validation set vs. 0% TD). The three main patterns associated with MAR ASD are CRMP1 + GDA (ASD% = 4.2 vs. TD% = 0, OR 31.04, p = <0.0001), CRMP1 + CRMP2 (ASD% = 3.6 vs. TD% = 0, OR 26.08, p = 0.0005) and NSE + STIP1 (ASD% = 3.1 vs. TD% = 0, OR 22.82, p = 0.0001). Additionally, we found that maternal autoantibody reactivity to CRMP1 significantly increases the odds of a child having a higher Autism Diagnostic Observation Schedule (ADOS) severity score (OR 2.3; 95% CI: 1.358-3.987, p = 0.0021). This is the first report that uses machine learning subgroup discovery to identify with 100% accuracy MAR ASD-specific patterns as potential biomarkers of risk for a subset of up to 18% of ASD cases in this study population.

    View details for DOI 10.1038/s41380-020-00998-8

    View details for PubMedID 33483694

  • Deleterious and Protective Psychosocial and Stress-Related Factors Predict Risk of Spontaneous Preterm Birth. American journal of perinatology Becker, M. n., Mayo, J. A., Phogat, N. K., Quaintance, C. C., Laborde, A. n., King, L. n., Gotlib, I. H., Gaudilliere, B. n., Angst, M. S., Shaw, G. M., Stevenson, D. K., Aghaeepour, N. n., Dhabhar, F. S. 2021

    Abstract

     The aim of the study was to: (1) Identify (early in pregnancy) psychosocial and stress-related factors that predict risk of spontaneous preterm birth (PTB, gestational age <37 weeks); (2) Investigate whether "protective" factors (e.g., happiness/social support) decrease risk; (3) Use the Dhabhar Quick-Assessment Questionnaire for Stress and Psychosocial Factors™ (DQAQ-SPF™) to rapidly quantify harmful or protective factors that predict increased or decreased risk respectively, of PTB. This is a prospective cohort study. Relative risk (RR) analyses investigated association between individual factors and PTB. Machine learning-based interdependency analysis (IDPA) identified factor clusters, strength, and direction of association with PTB. A nonlinear model based on support vector machines was built for predicting PTB and identifying factors that most strongly predicted PTB. Higher levels of deleterious factors were associated with increased RR for PTB: General anxiety (RR = 8.9; 95% confidence interval or CI = 2.0,39.6), pain (RR = 5.7; CI = 1.7,17.0); tiredness/fatigue (RR = 3.7; CI = 1.09,13.5); perceived risk of birth complications (RR = 4; CI = 1.6,10.01); self-rated health current (RR = 2.6; CI = 1.0,6.7) and previous 3 years (RR = 2.9; CI = 1.1,7.7); and divorce (RR = 2.9; CI = 1.1,7.8). Lower levels of protective factors were also associated with increased RR for PTB: low happiness (RR = 9.1; CI = 1.25,71.5); low support from parents/siblings (RR = 3.5; CI = 0.9,12.9), and father-of-baby (RR = 3; CI = 1.1,9.9). These factors were also components of the clusters identified by the IDPA: perceived risk of birth complications (p < 0.05 after FDR correction), and general anxiety, happiness, tiredness/fatigue, self-rated health, social support, pain, and sleep (p < 0.05 without FDR correction). Supervised analysis of all factors, subject to cross-validation, produced a model highly predictive of PTB (AUROC or area under the receiver operating characteristic = 0.73). Model reduction through forward selection revealed that even a small set of factors (including those identified by RR and IDPA) predicted PTB. These findings represent an important step toward identifying key factors, which can be assessed rapidly before/after conception, to predict risk of PTB, and perhaps other adverse pregnancy outcomes. Quantifying these factors, before, or early in pregnancy, could identify women at risk of delivering preterm, pinpoint mechanisms/targets for intervention, and facilitate the development of interventions to prevent PTB.· Newly designed questionnaire used for rapid quantification of stress and psychosocial factors early during pregnancy.. · Deleterious factors predict increased preterm birth (PTB) risk.. · Protective factors predict decreased PTB risk..

    View details for DOI 10.1055/s-0041-1729162

    View details for PubMedID 34015838

  • Objective Activity Parameters Track Patient-Specific Physical Recovery Trajectories After Surgery and Link With Individual Preoperative Immune States. Annals of surgery Fallahzadeh, R., Verdonk, F., Ganio, E., Culos, A., Stanley, N., Marić, I., Chang, A. L., Becker, M., Phongpreecha, T., Xenochristou, M., De Francesco, D., Espinosa, C., Gao, X., Tsai, A., Sultan, P., Tingle, M., Amanatullah, D. F., Huddleston, J. I., Goodman, S. B., Gaudilliere, B., Angst, M. S., Aghaeepour, N. 2021

    Abstract

    The longitudinal assessment of physical function with high temporal resolution at a scalable and objective level in patients recovering from surgery is highly desirable to understand the biological and clinical factors that drive the clinical outcome. However, physical recovery from surgery itself remains poorly defined and the utility of wearable technologies to study recovery after surgery has not been established.Prolonged postoperative recovery is often associated with long-lasting impairment of physical, mental, and social functions. While phenotypical and clinical patient characteristics account for some variation of individual recovery trajectories, biological differences likely play a major role. Specifically, patient-specific immune states have been linked to prolonged physical impairment after surgery. However, current methods of quantifying physical recovery lack patient specificity and objectivity.Here, a combined high-fidelity accelerometry and state-of-the-art deep immune profiling approach was studied in patients undergoing major joint replacement surgery. The aim was to determine whether objective physical parameters derived from accelerometry data can accurately track patient-specific physical recovery profiles (suggestive of a 'clock of postoperative recovery'), compare the performance of derived parameters with benchmark metrics including step count, and link individual recovery profiles with patients' preoperative immune state.The results of our models indicate that patient-specific temporal patterns of physical function can be derived with a precision superior to benchmark metrics. Notably, six distinct domains of physical function and sleep are identified to represent the objective temporal patterns: "activity capacity" and "moderate and overall activity" (declined immediately after surgery); "sleep disruption and sedentary activity" (increased after surgery); "overall sleep", "sleep onset", and "light activity" (no clear changes were observed after surgery). These patterns can be linked to individual patients' preoperative immune state using cross-validated canonical-correlation analysis. Importantly, the pSTAT3 signal activity in M-MDSCs predicted a slower recovery.Accelerometry-based recovery trajectories are scalable and objective outcomes to study patient-specific factors that drive physical recovery.

    View details for DOI 10.1097/SLA.0000000000005250

    View details for PubMedID 35129529

  • Data-Driven Modeling of Pregnancy-Related Complications. Trends in molecular medicine Espinosa, C. n., Becker, M. n., Marić, I. n., Wong, R. J., Shaw, G. M., Gaudilliere, B. n., Aghaeepour, N. n., Stevenson, D. K. 2021

    Abstract

    A healthy pregnancy depends on complex interrelated biological adaptations involving placentation, maternal immune responses, and hormonal homeostasis. Recent advances in high-throughput technologies have provided access to multiomics biological data that, combined with clinical and social data, can provide a deeper understanding of normal and abnormal pregnancies. Integration of these heterogeneous datasets using state-of-the-art machine-learning methods can enable the prediction of short- and long-term health trajectories for a mother and offspring and the development of treatments to prevent or minimize complications. We review advanced machine-learning methods that could: provide deeper biological insights into a pregnancy not yet unveiled by current methodologies; clarify the etiologies and heterogeneity of pathologies that affect a pregnancy; and suggest the best approaches to address disparities in outcomes affecting vulnerable populations.

    View details for DOI 10.1016/j.molmed.2021.01.007

    View details for PubMedID 33573911

  • Integration of mechanistic immunological knowledge into a machine learning pipeline improves predictions NATURE MACHINE INTELLIGENCE Culos, A., Tsai, A. S., Stanley, N., Becker, M., Ghaemi, M. S., McIlwain, D. R., Fallahzadeh, R., Tanada, A., Nassar, H., Espinosa, C., Xenochristou, M., Ganio, E., Peterson, L., Han, X., Stelzer, I. A., Ando, K., Gaudilliere, D., Phongpreecha, T., Maric, I., Chang, A. L., Shaw, G. M., Stevenson, D. K., Bendall, S., Davis, K. L., Fantl, W., Nolan, G. P., Hastie, T., Tibshirani, R., Angst, M. S., Gaudilliere, B., Aghaeepour, N. 2020
  • Integration of mechanistic immunological knowledge into a machine learning pipeline improves predictions. Nature machine intelligence Culos, A., Tsai, A. S., Stanley, N., Becker, M., Ghaemi, M. S., McIlwain, D. R., Fallahzadeh, R., Tanada, A., Nassar, H., Espinosa, C., Xenochristou, M., Ganio, E., Peterson, L., Han, X., Stelzer, I. A., Ando, K., Gaudilliere, D., Phongpreecha, T., Marić, I., Chang, A. L., Shaw, G. M., Stevenson, D. K., Bendall, S., Davis, K. L., Fantl, W., Nolan, G. P., Hastie, T., Tibshirani, R., Angst, M. S., Gaudilliere, B., Aghaeepour, N. 2020; 2 (10): 619-628

    Abstract

    The dense network of interconnected cellular signalling responses that are quantifiable in peripheral immune cells provides a wealth of actionable immunological insights. Although high-throughput single-cell profiling techniques, including polychromatic flow and mass cytometry, have matured to a point that enables detailed immune profiling of patients in numerous clinical settings, the limited cohort size and high dimensionality of data increase the possibility of false-positive discoveries and model overfitting. We introduce a generalizable machine learning platform, the immunological Elastic-Net (iEN), which incorporates immunological knowledge directly into the predictive models. Importantly, the algorithm maintains the exploratory nature of the high-dimensional dataset, allowing for the inclusion of immune features with strong predictive capabilities even if not consistent with prior knowledge. In three independent studies our method demonstrates improved predictions for clinically relevant outcomes from mass cytometry data generated from whole blood, as well as a large simulated dataset. The iEN is available under an open-source licence.

    View details for DOI 10.1038/s42256-020-00232-8

    View details for PubMedID 33294774

    View details for PubMedCentralID PMC7720904

  • OpenLUR: Off-the-shelf air pollution modeling with open features and machine learning ATMOSPHERIC ENVIRONMENT Lautenschlager, F., Becker, M., Kobs, K., Steininger, M., Davidson, P., Krause, A., Hotho, A. 2020; 233
  • MapLUR: Exploring a New Paradigm for Estimating Air Pollution Using Deep Learning on Map Images ACM TRANSACTIONS ON SPATIAL ALGORITHMS AND SYSTEMS Steininger, M., Kobs, K., Zehe, A., Lautenschlager, F., Becker, M., Hotho, A. 2020; 6 (3)

    View details for DOI 10.1145/3380973

    View details for Web of Science ID 000583755200006

  • Multi-Omic, Longitudinal Profile of Third-Trimester Pregnancies Identifies a Molecular Switch That Predicts the Onset of Labor. Stelzer, I., Ghaemi, M., Han, X., Ando, K., Peterson, L., Contrepois, K., Ganio, E., Tsai, A., Tsai, E., Rumer, K., Stanley, N., Fallazadeh, R., Becker, M., Culos, A., Gaudilliere, D., Wong, R., Winn, V., Shaw, G., Stevenson, D., Snyder, M., Angst, M., Aghaeepour, N., Gaudilliere, B. SPRINGER HEIDELBERG. 2020: 89A
  • VoPo leverages cellular heterogeneity for predictive modeling of single-cell data. Nature communications Stanley, N. n., Stelzer, I. A., Tsai, A. S., Fallahzadeh, R. n., Ganio, E. n., Becker, M. n., Phongpreecha, T. n., Nassar, H. n., Ghaemi, S. n., Maric, I. n., Culos, A. n., Chang, A. L., Xenochristou, M. n., Han, X. n., Espinosa, C. n., Rumer, K. n., Peterson, L. n., Verdonk, F. n., Gaudilliere, D. n., Tsai, E. n., Feyaerts, D. n., Einhaus, J. n., Ando, K. n., Wong, R. J., Obermoser, G. n., Shaw, G. M., Stevenson, D. K., Angst, M. S., Gaudilliere, B. n., Aghaeepour, N. n. 2020; 11 (1): 3738

    Abstract

    High-throughput single-cell analysis technologies produce an abundance of data that is critical for profiling the heterogeneity of cellular systems. We introduce VoPo (https://github.com/stanleyn/VoPo), a machine learning algorithm for predictive modeling and comprehensive visualization of the heterogeneity captured in large single-cell datasets. In three mass cytometry datasets, with the largest measuring hundreds of millions of cells over hundreds of samples, VoPo defines phenotypically and functionally homogeneous cell populations. VoPo further outperforms state-of-the-art machine learning algorithms in classification tasks, and identified immune-correlates of clinically-relevant parameters.

    View details for DOI 10.1038/s41467-020-17569-8

    View details for PubMedID 32719375

  • Multiomics Characterization of Preterm Birth in Low- and Middle-Income Countries. JAMA network open Jehan, F. n., Sazawal, S. n., Baqui, A. H., Nisar, M. I., Dhingra, U. n., Khanam, R. n., Ilyas, M. n., Dutta, A. n., Mitra, D. K., Mehmood, U. n., Deb, S. n., Mahmud, A. n., Hotwani, A. n., Ali, S. M., Rahman, S. n., Nizar, A. n., Ame, S. M., Moin, M. I., Muhammad, S. n., Chauhan, A. n., Begum, N. n., Khan, W. n., Das, S. n., Ahmed, S. n., Hasan, T. n., Khalid, J. n., Rizvi, S. J., Juma, M. H., Chowdhury, N. H., Kabir, F. n., Aftab, F. n., Quaiyum, A. n., Manu, A. n., Yoshida, S. n., Bahl, R. n., Rahman, A. n., Pervin, J. n., Winston, J. n., Musonda, P. n., Stringer, J. S., Litch, J. A., Ghaemi, M. S., Moufarrej, M. N., Contrepois, K. n., Chen, S. n., Stelzer, I. A., Stanley, N. n., Chang, A. L., Hammad, G. B., Wong, R. J., Liu, C. n., Quaintance, C. C., Culos, A. n., Espinosa, C. n., Xenochristou, M. n., Becker, M. n., Fallahzadeh, R. n., Ganio, E. n., Tsai, A. S., Gaudilliere, D. n., Tsai, E. S., Han, X. n., Ando, K. n., Tingle, M. n., Maric, I. n., Wise, P. H., Winn, V. D., Druzin, M. L., Gibbs, R. S., Darmstadt, G. L., Murray, J. C., Shaw, G. M., Stevenson, D. K., Snyder, M. P., Quake, S. R., Angst, M. S., Gaudilliere, B. n., Aghaeepour, N. n. 2020; 3 (12): e2029655

    Abstract

    Worldwide, preterm birth (PTB) is the single largest cause of deaths in the perinatal and neonatal period and is associated with increased morbidity in young children. The cause of PTB is multifactorial, and the development of generalizable biological models may enable early detection and guide therapeutic studies.To investigate the ability of transcriptomics and proteomics profiling of plasma and metabolomics analysis of urine to identify early biological measurements associated with PTB.This diagnostic/prognostic study analyzed plasma and urine samples collected from May 2014 to June 2017 from pregnant women in 5 biorepository cohorts in low- and middle-income countries (LMICs; ie, Matlab, Bangladesh; Lusaka, Zambia; Sylhet, Bangladesh; Karachi, Pakistan; and Pemba, Tanzania). These cohorts were established to study maternal and fetal outcomes and were supported by the Alliance for Maternal and Newborn Health Improvement and the Global Alliance to Prevent Prematurity and Stillbirth biorepositories. Data were analyzed from December 2018 to July 2019.Blood and urine specimens that were collected early during pregnancy (median sampling time of 13.6 weeks of gestation, according to ultrasonography) were processed, stored, and shipped to the laboratories under uniform protocols. Plasma samples were assayed for targeted measurement of proteins and untargeted cell-free ribonucleic acid profiling; urine samples were assayed for metabolites.The PTB phenotype was defined as the delivery of a live infant before completing 37 weeks of gestation.Of the 81 pregnant women included in this study, 39 had PTBs (48.1%) and 42 had term pregnancies (51.9%) (mean [SD] age of 24.8 [5.3] years). Univariate analysis demonstrated functional biological differences across the 5 cohorts. A cohort-adjusted machine learning algorithm was applied to each biological data set, and then a higher-level machine learning modeling combined the results into a final integrative model. The integrated model was more accurate, with an area under the receiver operating characteristic curve (AUROC) of 0.83 (95% CI, 0.72-0.91) compared with the models derived for each independent biological modality (transcriptomics AUROC, 0.73 [95% CI, 0.61-0.83]; metabolomics AUROC, 0.59 [95% CI, 0.47-0.72]; and proteomics AUROC, 0.75 [95% CI, 0.64-0.85]). Primary features associated with PTB included an inflammatory module as well as a metabolomic module measured in urine associated with the glutamine and glutamate metabolism and valine, leucine, and isoleucine biosynthesis pathways.This study found that, in LMICs and high PTB settings, major biological adaptations during term pregnancy follow a generalizable model and the predictive accuracy for PTB was augmented by combining various omics data sets, suggesting that PTB is a condition that manifests within multiple biological systems. These data sets, with machine learning partnerships, may be a key step in developing valuable predictive tests and intervention candidates for preventing PTB.

    View details for DOI 10.1001/jamanetworkopen.2020.29655

    View details for PubMedID 33337494