Academic Appointments

Professional Education

  • PhD, Stanford University (2012)
  • BS, Oregon State University (2004)


  • PGEs and trace metals in Sulfides

    I am undertaking analyses of trace elements in sulfides from samples at McDermitt Caldera, NV. The project utilized the Cs+ primary beam on the SHRIMP-RG, and is a new technique in development in the lab, with collaboration Jessica Warren and Megan D'Errico (Stanford GES)


    McDermitt Caldera, NV

  • U-Pb and Trace Elements in Apatite

    I am working to measure high precision (better than 5% uncertainties) 206Pb/238U ages on natural apatites. Trace element concentrations in apatites include Li, Cl, S, F, Mg, Fe, Sc, Y, REE, Hf, Th, and U, and are reproducible to better than 5% (1sigma). I have been working with several groups to analyze natural apatites, as well as Jonathan Payne's group analyzing trace elements in conodonts.



  • U-Pb depth profiling

    I have several projects in progress using a method by which we target specifically the outer-most unpolished zircon surface. The analyses of the surfaces contain data for the youngest-most mineral growth. I have applied this approach to look at age differences between the rim and core for zircon from the Fish Canyon Tuff. A second projects in collaboration with Mary Leech (SFSU) is targeting the youngest phase of metamorphic zircon growth from samples located in the Great Himalaya Sequence deformed and exhumed along the Zanskar Shear Zone. This is the only approach for targeting thin rims that may be only 2-5 microns in diameter, when viewed in cross section.



  • Combining zircon U-Th dating on the SHRIMP and U-Th-He on the Noblesse

    I am collaborating with Seth Burgess (Mendenhall Postdoc at USGS), Jorge Vazquez and Michelle Coombs (USGS) on combining these two techniques to date young (Holocene-Pleistocene) tephras in Alaska


    Fairbanks, AK

  • New applications in Rutile, Baddeleyite, Monazite, and other minerals

    I am always interested in new dating ideas, approaches, or methodology that can utilize the high-spatial resolution and high mass-resolution of the SHRIMP-RG. Recently, we have been running Rutile, Baddeleyite, and Apatite for U-Pb ages, but other potential minerals are also an option. Please contact me if you are interested in new method development ideas to tackle specific Earth science questions.



All Publications

  • Influence of radiation damage on Late Jurassic zircon from southern China: Evidence from in situ measurements of oxygen isotopes, laser raman, U–Pb ages, and trace elements Chemical Geology Wang, X., Coble, M. A., Valley, J. W., Shu, X., Kitajima, K., Spicuzza, M. J., Sun, T. 2014; 289: 122–136
  • Initial impingement of the Yellowstone plume located by widespread silicic volcanism contemporaneous with Columbia River flood basalts GEOLOGY Coble, M. A., Mahood, G. A. 2012; 40 (7): 655-658

    View details for DOI 10.1130/G32692.1

    View details for Web of Science ID 000305818900020

  • Calibration of Nu-Instruments Noblesse multicollector mass spectrometers for argon isotopic measurements using a newly developed reference gas CHEMICAL GEOLOGY Coble, M. A., Grove, M., Calvert, A. T. 2011; 290 (1-2): 75-87