I co-manage the SHRIMP-RG ion-microprobe at Stanford University, where I oversee operation of the laboratories and work closely with Stanford scientists and students as well as visiting scientists to undertake measurements on the SHRIMP-RG. This includes training users in SIMS methods, assisting with sample preparation/characterization, data acquisition, reduction, interpretation, and publication of results. I also contribute to the development and refinement of new techniques and standard development efforts on the SHRIMP-RG.

My research interests include:
(1) Improving our ability to resolve U-Pb and U-Th ages on zircon and other radiogenic minerals from young volcanic rocks by performing depth profile analyses on the outer-most unpolished mineral surfaces. I am also applying this approach to measuring ages and trace elements from thin metamorphic/hydrothermal overgrowths on mineral surfaces.
(2) U-Pb and trace elements of Apatite (and conodonts), including developing better reference standards.
(3) Combining measurements of volatile and trace elements from melt inclusions (Li, B, Cl, S, H2O, P, Sc, Nb, Ni, Cu, REE, Hf, Ta, U, Th, etc) to better understand magmatic processes.
(4) Developing trace element measurements in sulfide inclusions (Cl, S, Cu, As, Sb, PGEs, Ag and Au) using the SHRIMP-RG as well as on the nanoSIMS.
(5) Combining U-Pb and/or U-Th dating of zircon on the SHRIMP-RG with (U-Th)/He dating from young volcanic rocks with an emphasis of using the high-sensitivity of new generation sector noble gas mass spectrometer.
(6) Refining analytical methodology and standardization of rutile, baddeleyite, monazite, and other minerals on the SHRIMP-RG.
(7) Lithium and Boron isotopes on rhyolitic glasses, micas, and amphiboles.

I am always interested in new dating and trace element applications, analytical approaches, or methodology that can utilize the high-spatial resolution and high mass-resolution of the SHRIMP-RG. Please contact me if you are interested in new method development ideas to tackle specific Earth science questions.

Please visit for more information about the SHRIMP-RG.

Academic Appointments

Professional Education

  • PhD, Stanford University (2012)
  • BS, Oregon State University (2004)


  • PGEs and trace metals in Sulfides

    I am undertaking analyses of trace elements in sulfides from samples at McDermitt Caldera, NV. The project utilized the Cs+ primary beam on the SHRIMP-RG, and is a new technique in development in the lab, with collaboration Jessica Warren and Megan D'Errico (Stanford GES)


    McDermitt Caldera, NV

  • U-Pb and Trace Elements in Apatite

    I am working to measure high precision (better than 5% uncertainties) 206Pb/238U ages on natural apatites. Trace element concentrations in apatites include Li, Cl, S, F, Mg, Fe, Sc, Y, REE, Hf, Th, and U, and are reproducible to better than 5% (1sigma). I have been working with several groups to analyze natural apatites, as well as Jonathan Payne's group analyzing trace elements in conodonts.



  • U-Pb surface depth profiling

    I have several projects in progress using a method by which we target specifically the outer-most unpolished zircon surface. The analyses of the surfaces contain data for the youngest-most mineral growth. I have applied this approach to look at age differences between the rim and core for zircon from the Fish Canyon Tuff. A second projects in collaboration with Mary Leech (SFSU) is targeting the youngest phase of metamorphic zircon growth from samples located in the Great Himalaya Sequence deformed and exhumed along the Zanskar Shear Zone. This is the only approach for targeting thin rims that may be only 2-5 microns in diameter, when viewed in cross section.



  • Combining zircon U-Th dating on the SHRIMP and U-Th-He on the Noblesse

    I am collaborating with Seth Burgess (Mendenhall Postdoc at USGS), Jorge Vazquez and Michelle Coombs (USGS) on combining these two techniques to date young (Holocene-Pleistocene) tephras in Alaska


    Fairbanks, AK

  • New applications in Rutile, Baddeleyite, Monazite, and other minerals

    I am always interested in new dating ideas, approaches, or methodology that can utilize the high-spatial resolution and high mass-resolution of the SHRIMP-RG. Recently, we have been running Rutile, Baddeleyite, and Apatite for U-Pb ages, but other potential minerals are also an option. Please contact me if you are interested in new method development ideas to tackle specific Earth science questions.



All Publications

  • The eruptive and magmatic history of the youngest pulse of volcanism at the Valles caldera: implications for successfully dating late Quaternary eruptions JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH Zimmerer, M. J., Lafferty, J., Coble, M. A. 2016; 310: 50-57
  • Chemical abrasion-SIMS (CA-SIMS) U-Pb dating of zircon from the late Eocene Caetano caldera, Nevada CHEMICAL GEOLOGY Watts, K. E., Coble, M. A., Vazquez, J. A., Henry, C. D., Colgan, J. P., John, D. A. 2016; 439: 139-151
  • Refined deep-water depositional history and dating of the Tongaporutuan reference section, North Taranaki, New Zealand NEW ZEALAND JOURNAL OF GEOLOGY AND GEOPHYSICS Maier, K. L., Crundwell, M. P., Coble, M. A., King, P. R., Graham, S. A. 2016; 59: 313-329
  • Petrogenesis and provenance of distal volcanic tuffs from the Permian–Triassic Karoo Basin, South Africa: A window into a dissected magmatic province GEOSPHERE McKay, M. M., Coble, M. A., Hessler, A. M., Weislogel, A. L., Fildani, A. 2016; 12: 1-14

    View details for DOI 10.1130/GES01215.1

  • Elucidating the magmatic history of the Austurhorn silicic intrusive complex (southeast Iceland) using zircon elemental and isotopic geochemistry and geochronology CONTRIBUTIONS TO MINERALOGY AND PETROLOGY Padilla, A. J., Miller, C. F., Carley, T. L., Economos, R. C., Schmitt, A. K., Coble, M. A., Wooden, J. L., Fisher, C. M., Vervoort, J. D., Hanchar, J. M. 2016; 171 (69): 1-21
  • The Early Paleozoic basite magmatism of Western Transbaikalia: Composition, isotope age (U-Pb, SHRIMP RG), magma sources, and geodynamics Petrology Tsygankov, A. A., Udoratina, O. V., Burmakina, G. N., Antsiferova, T. N., Coble, M. A. 2016; 24: 367–391
  • Thermochronology of extensional orogenic collapse in the deep curst of Fiordland, New Zealand GEOSPHERE Schwartz, J. J., Stowell, H. H., Klepeis, K. A., Tulloch, A. J., Kylander-Clark, A. R., Hacker, B. R., Coble, M. A. 2016; 12: 1-31

    View details for DOI 10.1130/GES01232.1

  • Geology of the High Rock caldera complex, northwest Nevada, and implications for intense rhyolitic volcanism associated with flood basalt magmatism and the initiation of the Snake River Plain–Yellowstone trend GEOSPHERE Coble, M. A., Mahood, G. A. 2016; 12: 58-113

    View details for DOI 10.1130/GES01162.1

  • Constraints on plateau architecture and assembly from deep crustal xenoliths, northern Altiplano (SE Peru) GEOLOGICAL SOCIETY OF AMERICA BULLETIN Chapman, A. D., Mihai, D. N., McQuarrie, N., Coble, M. A., Petrescu, L., Hoffman, D. 2015; 127: 1777-1797

    View details for DOI 10.1130/B31206.1

  • Influence of radiation damage on Late Jurassic zircon from southern China: Evidence from in situ measurements of oxygen isotopes, laser raman, U–Pb ages, and trace elements CHEMICAL GEOLOGY Wang, X., Coble, M. A., Valley, J. W., Shu, X., Kitajima, K., Spicuzza, M. J., Sun, T. 2014; 289: 122–136
  • Initial impingement of the Yellowstone plume located by widespread silicic volcanism contemporaneous with Columbia River flood basalts GEOLOGY Coble, M. A., Mahood, G. A. 2012; 40 (7): 655-658

    View details for DOI 10.1130/G32692.1

    View details for Web of Science ID 000305818900020

  • Calibration of Nu-Instruments Noblesse multicollector mass spectrometers for argon isotopic measurements using a newly developed reference gas CHEMICAL GEOLOGY Coble, M. A., Grove, M., Calvert, A. T. 2011; 290 (1-2): 75-87