All Publications


  • Artificial papillary muscle device for off-pump transapical mitral valve repair. The Journal of thoracic and cardiovascular surgery Imbrie-Moore, A. M., Zhu, Y. n., Park, M. H., Paulsen, M. J., Wang, H. n., Woo, Y. J. 2020

    Abstract

    New transapical minimally invasive artificial chordae implantation devices are a promising alternative to traditional open-heart repair, with the potential for decreased postoperative morbidity and reduced recovery time. However, these devices can place increased stress on the artificial chordae. We designed an artificial papillary muscle to alleviate artificial chordae stresses and thus increase repair durability.The artificial papillary muscle device is a narrow elastic column with an inner core that can be implanted during the minimally invasive transapical procedure via the same ventricular incision site. The device was 3-dimensionally printed in biocompatible silicone for this study. To test efficacy, porcine mitral valves (n = 6) were mounted in a heart simulator, and isolated regurgitation was induced. Each valve was repaired with a polytetrafluoroethylene suture with apical anchoring followed by artificial papillary muscle anchoring. In each case, a high-resolution Fiber Bragg Grating sensor recorded forces on the suture.Hemodynamic data confirmed that both repairs-with and without the artificial papillary muscle device-were successful in eliminating mitral regurgitation. Both the peak artificial chordae force and the rate of change of force at the onset of systole were significantly lower with the device compared with apical anchoring without the device (P < .001 and P < .001, respectively).Our novel artificial papillary muscle could integrate with minimally invasive repairs to shorten the artificial chordae and behave as an elastic damper, thus reducing sharp increases in force. With our device, we have the potential to improve the durability of off-pump transapical mitral valve repair procedures.

    View details for DOI 10.1016/j.jtcvs.2020.11.105

    View details for PubMedID 33451843

  • Quadrupling the N95 Supply during the COVID-19 Crisis with an Innovative 3D-Printed Mask Adaptor. Healthcare (Basel, Switzerland) Imbrie-Moore, A. M., Park, M. H., Zhu, Y. n., Paulsen, M. J., Wang, H. n., Woo, Y. J. 2020; 8 (3)

    Abstract

    The need for personal protective equipment during the COVID-19 pandemic is far outstripping our ability to manufacture and distribute these supplies to hospitals. In particular, the medical N95 mask shortage is resulting in healthcare providers reusing masks or utilizing masks with filtration properties that do not meet medical N95 standards. We developed a solution for immediate use: a mask adaptor, outfitted with a quarter section of an N95 respirator that maintains the N95 seal standard, thereby quadrupling the N95 supply. A variety of designs were 3D-printed and optimized based on the following criteria: seal efficacy, filter surface area and N95 respirator multiplicity. The final design is reusable and features a 3D-printed soft silicone base as well as a rigid 3D-printed cartridge to seal one-quarter of a 3M 1860 N95 mask. Our mask passed the computerized N95 fit test for six individuals. All files are publicly available with this publication. Our design can provide immediate support for healthcare professionals in dire need of medical N95 masks by extending the current supply by a factor of four.

    View details for DOI 10.3390/healthcare8030225

    View details for PubMedID 32717841

  • Biomimetic six-axis robots replicate human cardiac papillary muscle motion: pioneering the next generation of biomechanical heart simulator technology. Journal of the Royal Society, Interface Imbrie-Moore, A. M., Park, M. H., Paulsen, M. J., Sellke, M. n., Kulkami, R. n., Wang, H. n., Zhu, Y. n., Farry, J. M., Bourdillon, A. T., Callinan, C. n., Lucian, H. J., Hironaka, C. E., Deschamps, D. n., Joseph Woo, Y. n. 2020; 17 (173): 20200614

    Abstract

    Papillary muscles serve as attachment points for chordae tendineae which anchor and position mitral valve leaflets for proper coaptation. As the ventricle contracts, the papillary muscles translate and rotate, impacting chordae and leaflet kinematics; this motion can be significantly affected in a diseased heart. In ex vivo heart simulation, an explanted valve is subjected to physiologic conditions and can be adapted to mimic a disease state, thus providing a valuable tool to quantitatively analyse biomechanics and optimize surgical valve repair. However, without the inclusion of papillary muscle motion, current simulators are limited in their ability to accurately replicate cardiac biomechanics. We developed and implemented image-guided papillary muscle (IPM) robots to mimic the precise motion of papillary muscles. The IPM robotic system was designed with six degrees of freedom to fully capture the native motion. Mathematical analysis was used to avoid singularity conditions, and a supercomputing cluster enabled the calculation of the system's reachable workspace. The IPM robots were implemented in our heart simulator with motion prescribed by high-resolution human computed tomography images, revealing that papillary muscle motion significantly impacts the chordae force profile. Our IPM robotic system represents a significant advancement for ex vivo simulation, enabling more reliable cardiac simulations and repair optimizations.

    View details for DOI 10.1098/rsif.2020.0614

    View details for PubMedID 33259750

  • Collagen-Supplemented Incubation Rapidly Augments Mechanical Property of Fibroblast Cell Sheets. Tissue engineering. Part A Zhu, Y., Thakore, A. D., Farry, J. M., Jung, J., Anilkumar, S., Wang, H., Imbrie-Moore, A. M., Park, M. H., Tran, N. A., Woo, Y. J. 2020

    Abstract

    Cell sheet technology using UpCell plates is a modern tool that enables the rapid creation of a single-layered cells without using extracellular matrix enzymatic digestion. Although this technique has the advantage of maintaining a sheet of cells without needing artificial scaffolds, these cell sheets remain extremely fragile. Collagen, the most abundant extracellular matrix component, is an attractive candidate for modulating tissue mechanical properties given its tunable property. In this study, we demonstrated rapid mechanical property augmentation of human dermal fibroblast cell sheets after incubation with bovine type I collagen for 24 hours on UpCell plates. We showed that treatment with collagen resulted in increased collagen I incorporation within the cell sheet without affecting cell morphology, cell type, or cell sheet quality. Atomic force microscopy measurements for controls, and cell sheets that received 50g/mL and 100g/mL collagen I treatments revealed an average Young's modulus of their respective intercellular regions: 6.6±1.0, 14.4±6.6, and 19.8±3.8 kPa during the loading condition, and 10.3±4.7, 11.7±2.2, and 18.1±3.4 kPa during the unloading condition. This methodology of rapid mechanical property augmentation of a cell sheet has a potential impact on cell sheet technology by improving the ease of construct manipulation, enabling new translational tissue engineering applications.

    View details for DOI 10.1089/ten.TEA.2020.0128

    View details for PubMedID 32703108

  • Ex Vivo Analysis of a Porcine Bicuspid Aortic Valve and Aneurysm Disease Model. The Annals of thoracic surgery Zhu, Y., Imbrie-Moore, A. M., Park, M. H., Paulsen, M. J., Wang, H., MacArthur, J. W., Woo, Y. J. 2020

    Abstract

    We identified an extremely rare congenital porcine type 0 lateral bicuspid aortic valve (BAV) from a fresh porcine heart. Using a 3D-printed ex vivo left heart simulator, we analyzed valvular hemodynamics at baseline, in an aortic aneurysm disease model, and after valve-sparing root replacement (VSRR). We showed that BAV regurgitation due to aortic aneurysm can be successfully repaired without significant hemodynamic impairment with the VSRR technique in an individualized approach. Our results provide direct hemodynamic evidence supporting the use of VSRR for patients with BAV regurgitation.

    View details for DOI 10.1016/j.athoracsur.2020.05.086

    View details for PubMedID 32663472

  • A Novel Aortic Regurgitation Model from Cusp Prolapse with Hemodynamic Validation Using an Ex Vivo Left Heart Simulator. Journal of cardiovascular translational research Zhu, Y. n., Imbrie-Moore, A. M., Paulsen, M. J., Priromprintr, B. n., Park, M. H., Wang, H. n., Lucian, H. J., Farry, J. M., Woo, Y. J. 2020

    Abstract

    Although ex vivo simulation is a valuable tool for surgical optimization, a disease model that mimics human aortic regurgitation (AR) from cusp prolapse is needed to accurately examine valve biomechanics. To simulate AR, four porcine aortic valves were explanted, and the commissure between the two largest leaflets was detached and re-implanted 5 mm lower to induce cusp prolapse. Four additional valves were tested in their native state as controls. All valves were tested in a heart simulator while hemodynamics, high-speed videography, and echocardiography data were collected. Our AR model successfully reproduced cusp prolapse with significant increase in regurgitant volume compared with that of the controls (23.2 ± 8.9 versus 2.8 ± 1.6 ml, p = 0.017). Hemodynamics data confirmed the simulation of physiologic disease conditions. Echocardiography and color flow mapping demonstrated the presence of mild to moderate eccentric regurgitation in our AR model. This novel AR model has enormous potential in the evaluation of valve biomechanics and surgical repair techniques. Graphical Abstract.

    View details for DOI 10.1007/s12265-020-10038-z

    View details for PubMedID 32495264