Professional Education

  • Doctor of Philosophy, Stanford University, CHEM-PHD (2017)

Lab Affiliations

All Publications

  • Function through Synthesis-Informed Design ACCOUNTS OF CHEMICAL RESEARCH Wender, P. A., Quiroz, R. V., Stevens, M. C. 2015; 48 (3): 752-760


    In 1996, a snapshot of the field of synthesis was provided by many of its thought leaders in a Chemical Reviews thematic issue on "Frontiers in Organic Synthesis". This Accounts of Chemical Research thematic issue on "Synthesis, Design, and Molecular Function" is intended to provide further perspective now from well into the 21st century. Much has happened in the past few decades. The targets, methods, strategies, reagents, procedures, goals, funding, practices, and practitioners of synthesis have changed, some in dramatic ways as documented in impressive contributions to this issue. However, a constant for most synthesis studies continues to be the goal of achieving function with synthetic economy. Whether in the form of new catalysts, reagents, therapeutic leads, diagnostics, drug delivery systems, imaging agents, sensors, materials, energy generation and storage systems, bioremediation strategies, or molecules that challenge old theories or test new ones, the function of a target has been and continues to be a major and compelling justification for its synthesis. While the targets of synthesis have historically been heavily represented by natural products, increasingly design, often inspired by natural structures, is providing a new source of target structures exhibiting new or natural functions and new or natural synthetic challenges. Complementing isolation and screening approaches to new target identification, design enables one to create targets de novo with an emphasis on sought-after function and synthetic innovation with step-economy. Design provides choice. It allows one to determine how close a synthesis will come to the ideal synthesis and how close a structure will come to the ideal function. In this Account, we address studies in our laboratory on function-oriented synthesis (FOS), a strategy to achieve function by design and with synthetic economy. By starting with function rather than structure, FOS places an initial emphasis on target design, thereby harnessing the power of chemists and computers to create new structures with desired functions that could be prepared in a simple, safe, economical, and green, if not ideal, fashion. Reported herein are examples of FOS associated with (a) molecular recognition, leading to the first designed phorbol-inspired protein kinase C regulatory ligands, the first designed bryostatin analogs, the newest bryologs, and a new family of designed kinase inhibitors, (b) target modification, leading to highly simplified but functionally competent photonucleases-molecules that cleave DNA upon photoactivation, (c) drug delivery, leading to cell penetrating molecular transporters, molecules that ferry other attached or complexed molecules across biological barriers, and (d) new reactivity-regenerating reagents in the form of functional equivalents of butatrienes, reagents that allow for back-to-back three-component cycloaddition reactions, thus achieving structural complexity and value with step-economy. While retrosynthetic analysis seeks to identify the best way to make a target, retrofunction analysis seeks to identify the best targets to make. In essence, form (structure) follows function.

    View details for DOI 10.1021/acs.accounts.5b00004

    View details for Web of Science ID 000351326900027

    View details for PubMedID 25742599

  • Reactivity and Chemoselectivity of Allenes in Rh(I)-Catalyzed Intermolecular (5+2) Cycloadditions with Vinylcyclopropanes: Allene-Mediated Rhodacycle Formation Can Poison Rh(I)-Catalyzed Cycloadditions JOURNAL OF THE AMERICAN CHEMICAL SOCIETY Hong, X., Stevens, M. C., Liu, P., Wender, P. A., Houk, K. N. 2014; 136 (49): 17273-17283


    Allenes are important 2π building blocks in organic synthesis and engage as 2-carbon components in many metal-catalyzed reactions. Wender and co-workers discovered that methyl substituents on the terminal allene double bond counterintuitively change the reactivities of allenes in [Rh(CO)2Cl]2-catalyzed intermolecular (5 + 2) cycloadditions with vinylcyclopropanes (VCPs). More sterically encumbered allenes afford higher cycloadduct yields, and such effects are also observed in other Rh(I)-catalyzed intermolecular cycloadditions. Through density functional theory calculations (B3LYP and M06) and experiment, we explored this enigmatic reactivity and selectivity of allenes in [Rh(CO)2Cl]2-catalyzed intermolecular (5 + 2) cycloadditions with VCPs. The apparent low reactivity of terminally unsubstituted allenes is associated with a competing allene dimerization that irreversibly sequesters rhodium. With terminally substituted allenes, steric repulsion between the terminal substituents significantly increases the barrier of allene dimerization while the barrier of the (5 + 2) cycloaddition is not affected, and thus the cycloaddition prevails. Computation has also revealed the origin of chemoselectivity in (5 + 2) cycloadditions with allene-ynes. Although simple allene and acetylene have similar reaction barriers, intermolecular (5 + 2) cycloadditions of allene-ynes occur exclusively at the terminal allene double bond. The terminal double bond is more reactive due to the enhanced d-π* backdonation. At the same time, insertion of the internal double bond of an allene-yne has a higher barrier as it would break π conjugation. Substituted alkynes are more difficult to insert compared with acetylene, because of the steric repulsion from the additional substituents. This leads to the greater reactivity of the allene double bond relative to the alkynyl group in allene-ynes.

    View details for DOI 10.1021/ja5098308

    View details for Web of Science ID 000346544200044

    View details for PubMedID 25379606

  • Propargyltrimethylsilanes as allene equivalents in transition metal-catalyzed [5 + 2] cycloadditions. Organic letters Wender, P. A., Inagaki, F., Pfaffenbach, M., Stevens, M. C. 2014; 16 (11): 2923-2925


    Conventional allenes have not been effective π-reactive 2-carbon components in many intermolecular cycloadditions including metal-catalyzed [5 + 2] cycloadditions. We report herein that rhodium-catalyzed [5 + 2] cycloadditions of propargyltrimethylsilanes and vinylcyclopropanes provide, after in situ protodesilylation, a highly efficient route to formal allene cycloadducts. Propargyltrimethylsilanes function as safe, easily handled synthetic equivalents of gaseous allenes and hard-to-access monosubstituted allenes. In this one-flask procedure, they provide cycloadducts of what is formally addition to the more sterically encumbered allene double bond.

    View details for DOI 10.1021/ol501114q

    View details for PubMedID 24819093

    View details for PubMedCentralID PMC4051429

  • Function through bio-inspired, synthesis-informed design: step-economical syntheses of designed kinase inhibitors ORGANIC CHEMISTRY FRONTIERS Wender, P. A., Axtman, A. D., Golden, J. E., Kee, J., Sirois, L. E., Quiroz, R. V., Stevens, M. C. 2014; 1 (10): 1166-1171

    View details for DOI 10.1039/c4qo00228h

    View details for Web of Science ID 000364430800005