Academic Appointments

Honors & Awards

  • Early Career Life Scientist Award, American Society for Cell Biology (2011)
  • Searle Scholar, Searle Scholar Program (2010-2013)
  • Fellowship Award in the Neurosciences, The Esther A. & Joseph Klingenstein Fund (2009-2012)
  • Scientist Development Award, American Heart Association (2009-2012)
  • Basil O'Connor Award, March of Dimes (2009-2011)
  • Career Development Award, AACR-Pancreatic Cancer Action Network (2009-2011)
  • Sloan Research Fellowship, Alfred P. Sloan Foundation (2009-2011)
  • Frederick E. Terman Fellow, Stanford University (2008-2011)
  • Postdoctoral Fellowship, Damon Runyon Cancer Research Foundation (2003-2005)
  • Ph.D. Fellowship, Boehringer Ingelheim Foundation (1998-2001)

Professional Education

  • Postdoc, Genentech, Cell Biology and Biochemistry (2007)
  • Ph.D., UC Berkeley and Université Paris-Orsay, Molecular and Cellular Biology (2001)
  • B.Sc., Ecole Normale Supérieure (Paris), Biology and Biochemistry (1997)

Current Research and Scholarly Interests

Our laboratory investigates the molecular principles of primary cilium assembly and function. Shaped like an antenna projecting out of the cell, the primary cilium exposes receptors for diverse stimuli (like platelet-derived growth factors, Hedgehog morphogens and olfactory cues) and concentrates their downstream signaling machinery to send specific molecular responses back into the cell. Despite these fascinating properties, the cilium has historically been the least studied cellular organelle and most of the fundamental questions concerning cilium biogenesis and function remain unanswered. Nowhere is our knowledge gap more striking than for the ciliopathies, a class of inherited disorders of the cilium whose central features include obesity, kidney malformations and retinal degeneration. We thus intend to uncover the molecular machines that build cilia and convey information into and out of cilia by applying proteomics, cellular imaging and in vitro reconstitution assays to entry points provided by human genetics.

2016-17 Courses

Stanford Advisees

  • Postdoctoral Faculty Sponsor
    Fan Ye
  • Postdoctoral Research Mentor
    Fan Ye

Graduate and Fellowship Programs

All Publications

  • Microtubules acquire resistance from mechanical breakage through intralumenal acetylation SCIENCE Xu, Z., Schaedel, L., Portran, D., Aguilar, A., Gaillard, J., Marinkovich, M. P., Thery, M., Nachury, M. V. 2017; 356 (6335): 328-332


    Eukaryotic cells rely on long-lived microtubules for intracellular transport and as compression-bearing elements. We considered that long-lived microtubules are acetylated inside their lumen and that microtubule acetylation may modify microtubule mechanics. Here, we found that tubulin acetylation is required for the mechanical stabilization of long-lived microtubules in cells. Depletion of the tubulin acetyltransferase TAT1 led to a significant increase in the frequency of microtubule breakage. Nocodazole-resistant microtubules lost upon removal of acetylation were largely restored by either pharmacological or physical removal of compressive forces. In in vitro reconstitution experiments, acetylation was sufficient to protect microtubules from mechanical breakage. Thus, acetylation increases mechanical resilience to ensure the persistence of long-lived microtubules.

    View details for DOI 10.1126/science.aai8764

    View details for Web of Science ID 000399540100064

    View details for PubMedID 28428427

  • Tubulin acetylation protects long-lived microtubules against mechanical ageing. Nature cell biology Portran, D., Schaedel, L., Xu, Z., Théry, M., Nachury, M. V. 2017


    Long-lived microtubules endow the eukaryotic cell with long-range transport abilities. While long-lived microtubules are acetylated on Lys40 of α-tubulin (αK40), acetylation takes place after stabilization and does not protect against depolymerization. Instead, αK40 acetylation has been proposed to mechanically stabilize microtubules. Yet how modification of αK40, a residue exposed to the microtubule lumen and inaccessible to microtubule-associated proteins and motors, could affect microtubule mechanics remains an open question. Here we develop FRET-based assays that report on the lateral interactions between protofilaments and find that αK40 acetylation directly weakens inter-protofilament interactions. Congruently, αK40 acetylation affects two processes largely governed by inter-protofilament interactions, reducing the nucleation frequency and accelerating the shrinkage rate. Most relevant to the biological function of acetylation, microfluidics manipulations demonstrate that αK40 acetylation enhances flexibility and confers resilience against repeated mechanical stresses. Thus, unlike deacetylated microtubules that accumulate damage when subjected to repeated stresses, long-lived microtubules are protected from mechanical ageing through their acquisition of αK40 acetylation. In contrast to other tubulin post-translational modifications that act through microtubule-associated proteins, motors and severing enzymes, intraluminal acetylation directly tunes the compliance and resilience of microtubules.

    View details for DOI 10.1038/ncb3481

    View details for PubMedID 28250419

  • An Actin Network Dispatches Ciliary GPCRs into Extracellular Vesicles to Modulate Signaling. Cell Nager, A. R., Goldstein, J. S., Herranz-Pérez, V., Portran, D., Ye, F., Garcia-Verdugo, J. M., Nachury, M. V. 2017; 168 (1-2): 252-263 e14


    Signaling receptors dynamically exit cilia upon activation of signaling pathways such as Hedgehog. Here, we find that when activated G protein-coupled receptors (GPCRs) fail to undergo BBSome-mediated retrieval from cilia back into the cell, these GPCRs concentrate into membranous buds at the tips of cilia before release into extracellular vesicles named ectosomes. Unexpectedly, actin and the actin regulators drebrin and myosin 6 mediate ectosome release from the tip of cilia. Mirroring signal-dependent retrieval, signal-dependent ectocytosis is a selective and effective process that removes activated signaling molecules from cilia. Congruently, ectocytosis compensates for BBSome defects as ectocytic removal of GPR161, a negative regulator of Hedgehog signaling, permits the appropriate transduction of Hedgehog signals in Bbs mutants. Finally, ciliary receptors that lack retrieval determinants such as the anorexigenic GPCR NPY2R undergo signal-dependent ectocytosis in wild-type cells. Our data show that signal-dependent ectocytosis regulates ciliary signaling in physiological and pathological contexts.

    View details for DOI 10.1016/j.cell.2016.11.036

    View details for PubMedID 28017328

  • Proteomics of Primary Cilia by Proximity Labeling DEVELOPMENTAL CELL Mick, D. U., Rodrigues, R. B., Leib, R. D., Adams, C. M., Chien, A. S., Gygi, S. P., Nachury, M. V. 2015; 35 (4): 497-512


    While cilia are recognized as important signaling organelles, the extent of ciliary functions remains unknown because of difficulties in cataloguing proteins from mammalian primary cilia. We present a method that readily captures rapid snapshots of the ciliary proteome by selectively biotinylating ciliary proteins using a cilia-targeted proximity labeling enzyme (cilia-APEX). Besides identifying known ciliary proteins, cilia-APEX uncovered several ciliary signaling molecules. The kinases PKA, AMPK, and LKB1 were validated as bona fide ciliary proteins and PKA was found to regulate Hedgehog signaling in primary cilia. Furthermore, proteomics profiling of Ift27/Bbs19 mutant cilia correctly detected BBSome accumulation inside Ift27(-/-) cilia and revealed that β-arrestin 2 and the viral receptor CAR are candidate cargoes of the BBSome. This work demonstrates that proximity labeling can be applied to proteomics of non-membrane-enclosed organelles and suggests that proteomics profiling of cilia will enable a rapid and powerful characterization of ciliopathies.

    View details for DOI 10.1016/j.devcel.2015.10.015

    View details for Web of Science ID 000365099300013

    View details for PubMedID 26585297

  • The Intraflagellar Transport Protein IFT27 Promotes BBSome Exit from Cilia through the GTPase ARL6/BBS3 DEVELOPMENTAL CELL Liew, G. M., Ye, F., Nager, A. R., Murphy, J. P., Lee, J. S., Aguiar, M., Breslow, D. K., Gygi, S. P., Nachury, M. V. 2014; 31 (3): 265-278
  • The oral-facial-digital syndrome gene C2CD3 encodes a positive regulator of centriole elongation. Nature genetics Thauvin-Robinet, C., Lee, J. S., Lopez, E., Herranz-Pérez, V., Shida, T., Franco, B., Jego, L., Ye, F., Pasquier, L., Loget, P., Gigot, N., Aral, B., Lopes, C. A., St-Onge, J., Bruel, A., Thevenon, J., González-Granero, S., Alby, C., Munnich, A., Vekemans, M., Huet, F., Fry, A. M., Saunier, S., Rivière, J., Attié-Bitach, T., Garcia-Verdugo, J. M., Faivre, L., Mégarbané, A., Nachury, M. V. 2014; 46 (8): 905-911


    Centrioles are microtubule-based, barrel-shaped structures that initiate the assembly of centrosomes and cilia. How centriole length is precisely set remains elusive. The microcephaly protein CPAP (also known as MCPH6) promotes procentriole growth, whereas the oral-facial-digital (OFD) syndrome protein OFD1 represses centriole elongation. Here we uncover a new subtype of OFD with severe microcephaly and cerebral malformations and identify distinct mutations in two affected families in the evolutionarily conserved C2CD3 gene. Concordant with the clinical overlap, C2CD3 colocalizes with OFD1 at the distal end of centrioles, and C2CD3 physically associates with OFD1. However, whereas OFD1 deletion leads to centriole hyperelongation, loss of C2CD3 results in short centrioles without subdistal and distal appendages. Because C2CD3 overexpression triggers centriole hyperelongation and OFD1 antagonizes this activity, we propose that C2CD3 directly promotes centriole elongation and that OFD1 acts as a negative regulator of C2CD3. Our results identify regulation of centriole length as an emerging pathogenic mechanism in ciliopathies.

    View details for DOI 10.1038/ng.3031

    View details for PubMedID 24997988

  • An in vitro assay for entry into cilia reveals unique properties of the soluble diffusion barrier JOURNAL OF CELL BIOLOGY Breslow, D. K., Koslover, E. F., Seydel, F., Spakowitz, A. J., Nachury, M. V. 2013; 203 (1): 129-147


    Specific proteins are concentrated within primary cilia, whereas others remain excluded. To understand the mechanistic basis of entry into cilia, we developed an in vitro assay using cells in which the plasma membrane was permeabilized, but the ciliary membrane was left intact. Using a diffusion-to-capture system and quantitative analysis, we find that proteins >9 nm in diameter (∼100 kD) are restricted from entering cilia, and we confirm these findings in vivo. Interference with the nuclear pore complex (NPC) or the actin cytoskeleton in permeabilized cells demonstrated that the ciliary diffusion barrier is mechanistically distinct from those of the NPC or the axon initial segment. Moreover, applying a mass transport model to this system revealed diffusion coefficients for soluble and membrane proteins within cilia that are compatible with rapid exploration of the ciliary space in the absence of active transport. Our results indicate that large proteins require active transport for entry into cilia but not necessarily for movement inside cilia.

    View details for DOI 10.1083/jcb.201212024

    View details for Web of Science ID 000325742200013

    View details for PubMedID 24100294

  • Single molecule imaging reveals a major role for diffusion in the exploration of ciliary space by signaling receptors. eLife Ye, F., Breslow, D. K., Koslover, E. F., Spakowitz, A. J., Nelson, W. J., Nachury, M. V. 2013; 2


    The dynamic organization of signaling cascades inside primary cilia is key to signal propagation. Yet little is known about the dynamics of ciliary membrane proteins besides a possible role for motor-driven Intraflagellar Transport (IFT). To characterize these dynamics, we imaged single molecules of Somatostatin Receptor 3 (SSTR3, a GPCR) and Smoothened (Smo, a Hedgehog signal transducer) in the ciliary membrane. While IFT trains moved processively from one end of the cilium to the other, single SSTR3 and Smo underwent mostly diffusive behavior interspersed with short periods of directional movements. Statistical subtraction of instant velocities revealed that SSTR3 and Smo spent less than a third of their time undergoing active transport. Finally, SSTR3 and IFT movements could be uncoupled by perturbing either membrane protein diffusion or active transport. Thus ciliary membrane proteins move predominantly by diffusion, and attachment to IFT trains is transient and stochastic rather than processive or spatially determined. DOI:

    View details for DOI 10.7554/eLife.00654

    View details for PubMedID 23930224

  • The Conserved Bardet-Biedl Syndrome Proteins Assemble a Coat that Traffics Membrane Proteins to Cilia CELL Jin, H., White, S. R., Shida, T., Schulz, S., Aguiar, M., Gygi, S. P., Bazan, J. F., Nachury, M. V. 2010; 141 (7): 1208-U198


    The BBSome is a complex of Bardet-Biedl Syndrome (BBS) proteins that shares common structural elements with COPI, COPII, and clathrin coats. Here, we show that the BBSome constitutes a coat complex that sorts membrane proteins to primary cilia. The BBSome is the major effector of the Arf-like GTPase Arl6/BBS3, and the BBSome and GTP-bound Arl6 colocalize at ciliary punctae in an interdependent manner. Strikingly, Arl6(GTP)-mediated recruitment of the BBSome to synthetic liposomes produces distinct patches of polymerized coat apposed onto the lipid bilayer. Finally, the ciliary targeting signal of somatostatin receptor 3 needs to be directly recognized by the BBSome in order to mediate targeting of membrane proteins to cilia. Thus, we propose that trafficking of BBSome cargoes to cilia entails the coupling of BBSome coat polymerization to the recognition of sorting signals by the BBSome.

    View details for DOI 10.1016/j.cell.2010.05.015

    View details for Web of Science ID 000279148100017

    View details for PubMedID 20603001

  • A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis CELL Nachury, M. V., Loktev, A. V., Zhang, Q., Westlake, C. J., Peranen, J., Merdes, A., Slusarski, D. C., Scheller, R. H., Bazan, J. F., Sheffield, V. C., Jackson, P. K. 2007; 129 (6): 1201-1213


    Primary cilium dysfunction underlies the pathogenesis of Bardet-Biedl syndrome (BBS), a genetic disorder whose symptoms include obesity, retinal degeneration, and nephropathy. However, despite the identification of 12 BBS genes, the molecular basis of BBS remains elusive. Here we identify a complex composed of seven highly conserved BBS proteins. This complex, the BBSome, localizes to nonmembranous centriolar satellites in the cytoplasm but also to the membrane of the cilium. Interestingly, the BBSome is required for ciliogenesis but is dispensable for centriolar satellite function. This ciliogenic function is mediated in part by the Rab8 GDP/GTP exchange factor, which localizes to the basal body and contacts the BBSome. Strikingly, Rab8(GTP) enters the primary cilium and promotes extension of the ciliary membrane. Conversely, preventing Rab8(GTP) production blocks ciliation in cells and yields characteristic BBS phenotypes in zebrafish. Our data reveal that BBS may be caused by defects in vesicular transport to the cilium.

    View details for DOI 10.1016/j.cell.2007.03.053

    View details for Web of Science ID 000247390400022

    View details for PubMedID 17574030

  • Fifteen years of research on oral-facial-digital syndromes: from 1 to 16 causal genes. Journal of medical genetics Bruel, A., Franco, B., Duffourd, Y., Thevenon, J., Jego, L., Lopez, E., Deleuze, J., Doummar, D., Giles, R. H., Johnson, C. A., Huynen, M. A., Chevrier, V., Burglen, L., Morleo, M., Desguerres, I., Pierquin, G., Doray, B., Gilbert-Dussardier, B., Reversade, B., Steichen-Gersdorf, E., Baumann, C., Panigrahi, I., Fargeot-Espaliat, A., Dieux, A., David, A., Goldenberg, A., Bongers, E., Gaillard, D., Argente, J., Aral, B., Gigot, N., St-Onge, J., Birnbaum, D., Phadke, S. R., Cormier-Daire, V., Eguether, T., Pazour, G. J., Herranz-Pérez, V., Goldstein, J. S., Pasquier, L., Loget, P., Saunier, S., Mégarbané, A., Rosnet, O., Leroux, M. R., Wallingford, J. B., Blacque, O. E., Nachury, M. V., Attie-Bitach, T., Rivière, J., Faivre, L., Thauvin-Robinet, C. 2017; 54 (6): 371-380


    Oral-facial-digital syndromes (OFDS) gather rare genetic disorders characterised by facial, oral and digital abnormalities associated with a wide range of additional features (polycystic kidney disease, cerebral malformations and several others) to delineate a growing list of OFDS subtypes. The most frequent, OFD type I, is caused by a heterozygous mutation in the OFD1 gene encoding a centrosomal protein. The wide clinical heterogeneity of OFDS suggests the involvement of other ciliary genes. For 15 years, we have aimed to identify the molecular bases of OFDS. This effort has been greatly helped by the recent development of whole-exome sequencing (WES). Here, we present all our published and unpublished results for WES in 24 cases with OFDS. We identified causal variants in five new genes (C2CD3, TMEM107, INTU, KIAA0753 and IFT57) and related the clinical spectrum of four genes in other ciliopathies (C5orf42, TMEM138, TMEM231 and WDPCP) to OFDS. Mutations were also detected in two genes previously implicated in OFDS. Functional studies revealed the involvement of centriole elongation, transition zone and intraflagellar transport defects in OFDS, thus characterising three ciliary protein modules: the complex KIAA0753-FOPNL-OFD1, a regulator of centriole elongation; the Meckel-Gruber syndrome module, a major component of the transition zone; and the CPLANE complex necessary for IFT-A assembly. OFDS now appear to be a distinct subgroup of ciliopathies with wide heterogeneity, which makes the initial classification obsolete. A clinical classification restricted to the three frequent/well-delineated subtypes could be proposed, and for patients who do not fit one of these three main subtypes, a further classification could be based on the genotype.

    View details for DOI 10.1136/jmedgenet-2016-104436

    View details for PubMedID 28289185

  • Chemical structure-guided design of dynapyrazoles, potent cell-permeable dynein inhibitors with a unique mode of action. eLife Steinman, J. B., Santarossa, C. C., Miller, R. M., Yu, L. S., Serpinskaya, A. S., Furukawa, H., Morimoto, S., Tanaka, Y., Nishitani, M., Asano, M., Zalyte, R., Ondrus, A. E., Johnson, A. G., Ye, F., Nachury, M. V., Fukase, Y., Aso, K., Foley, M. A., Gelfand, V. I., Chen, J. K., Carter, A. P., Kapoor, T. M. 2017; 6


    Cytoplasmic dyneins are motor proteins in the AAA+ superfamily that power transport of cellular cargos towards microtubule minus-ends. Recently, ciliobrevins were reported as selective cell-permeable inhibitors of cytoplasmic dyneins. As is often true for first-in-class inhibitors, the use of ciliobrevins has been limited by low potency. Moreover, suboptimal chemical properties, such as the potential to isomerize, have hindered efforts to improve ciliobrevins. Here, we characterized the structure of ciliobrevins and designed conformationally-constrained isosteres. We identified dynapyrazoles, inhibitors more potent than ciliobrevins in vitro, and find that while ciliobrevins inhibit both dynein's microtubule-stimulated and basal ATPase activity, dynapyrazoles block only microtubule-stimulated activity. Single-digit micromolar concentrations of dynapyrazoles block intraflagellar transport in the cilium and lysosome motility in the cytoplasm, processes that depend on cytoplasmic dyneins. Together, our studies suggest that chemical structure-based analyses can lead to inhibitors with distinct modes of inhibition and improved properties.

    View details for DOI 10.7554/eLife.25174

    View details for PubMedID 28524820

  • Loss of the BBSome perturbs endocytic trafficking and disrupts virulence of Trypanosoma brucei PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Langousis, G., Shimogawa, M. M., Saada, E. A., Vashisht, A. A., Spreafico, R., Nager, A. R., Barshop, W. D., Nachury, M. V., Wohlschlegel, J. A., Hill, K. L. 2016; 113 (3): 632-637
  • Cytoplasmic Dynein Antagonists with Improved Potency and Isoform Selectivity ACS CHEMICAL BIOLOGY See, S. K., Hoogendoorn, S., Chung, A. H., Ye, F., Steinman, J. B., Sakata-Kato, T., Miller, R. M., Cupido, T., Zalyte, R., Carter, A. P., Nachury, M. V., Kapoor, T. M., Chen, J. K. 2016; 11 (1): 53-60
  • Microtubules self-repair in response to mechanical stress NATURE MATERIALS Schaedel, L., John, K., Gaillard, J., Nachury, M. V., Blanchoin, L., Thery, M. 2015; 14 (11): 1156-?

    View details for DOI 10.1038/NMAT4396

    View details for Web of Science ID 000363471900025

    View details for PubMedID 26343914

  • Structural basis for Notch1 engagement of Delta-like 4 SCIENCE Luca, V. C., Jude, K. M., Pierce, N. W., Nachury, M. V., Fischer, S., Garcia, K. C. 2015; 347 (6224): 847-853
  • Analysis of soluble protein entry into primary cilia using semipermeabilized cells. Methods in cell biology Breslow, D. K., Nachury, M. V. 2015; 127: 203-221


    The primary cilium is a protrusion from the cell surface that serves as a specialized compartment for signal transduction. Many signaling factors are known to be dynamically concentrated within cilia and to require cilia for their function. Yet protein entry into primary cilia remains poorly understood. To enable a mechanistic analysis of soluble protein entry into cilia, we developed a method for semipermeabilization of mammalian cells in which the plasma membrane is permeabilized while the ciliary membrane remains intact. Using semipermeabilized cells as the basis for an in vitro diffusion-to-capture assay, we uncovered a size-dependent diffusion barrier that restricts soluble protein exchange between the cytosol and the cilium. The manipulability of this in vitro system enabled an extensive characterization of the ciliary diffusion barrier and led us to show that the barrier is mechanistically distinct from those at the axon initial segment and the nuclear pore complex. Because semipermeabilized cells enable a range of experimental perturbations that would not be easily feasible in intact cells, we believe this methodology will provide a unique resource for investigating primary cilium function in development and disease.

    View details for DOI 10.1016/bs.mcb.2014.12.006

    View details for PubMedID 25837393

  • Structural basis for membrane targeting of the BBSome by ARL6. Nature structural & molecular biology Mourão, A., Nager, A. R., Nachury, M. V., Lorentzen, E. 2014; 21 (12): 1035-1041


    The BBSome is a coat-like ciliary trafficking complex composed of proteins mutated in Bardet-Biedl syndrome (BBS). A critical step in BBSome-mediated sorting is recruitment of the BBSome to membranes by the GTP-bound Arf-like GTPase ARL6. We have determined crystal structures of Chlamydomonas reinhardtii ARL6-GDP, ARL6-GTP and the ARL6-GTP-BBS1 complex. The structures demonstrate how ARL6-GTP binds the BBS1 β-propeller at blades 1 and 7 and explain why GTP- but not GDP-bound ARL6 can recruit the BBSome to membranes. Single point mutations in the ARL6-GTP-BBS1 interface abolish the interaction of ARL6 with the BBSome and prevent the import of BBSomes into cilia. Furthermore, we show that BBS1 with the M390R mutation, responsible for 30% of all reported BBS disease cases, fails to interact with ARL6-GTP, thus providing a molecular rationale for patient pathologies.

    View details for DOI 10.1038/nsmb.2920

    View details for PubMedID 25402481

  • How do cilia organize signalling cascades? PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES Nachury, M. V. 2014; 369 (1650)


    Cilia and flagella are closely related centriole-nucleated protrusions of the cell with roles in motility and signal transduction. Two of the best-studied signalling pathways organized by cilia are the transduction cascade for the morphogen Hedgehog in vertebrates and the mating pathway that initiates gamete fusion in the unicellular green alga Chlamydomonas reinhardtii. What is the role of cilia in these signalling transduction cascades? In both Hedgehog and mating pathways, all signalling intermediates have been found to localize to cilia, and, for some signalling factors, ciliary localization is regulated by pathway activation. Given a concentration factor of three orders of magnitude provided by translocating a protein into the cilium, the compartment model proposes that cilia act as miniaturized reaction tubes bringing signalling factors and processing enzymes in close proximity. On the other hand, the scaffolding model views the intraflagellar transport machinery, whose primary function is to build cilia and flagella, as a molecular scaffold for the mating transduction cascade at the flagellar membrane. While these models may coexist, it is hoped that a precise understanding of the mechanisms that govern signalling inside cilia will provide a satisfying answer to the question 'how do cilia organize signalling?'. This review covers the evidence supporting each model of signalling and outlines future directions that may address which model applies in given biological settings.

    View details for DOI 10.1098/rstb.2013.0465

    View details for Web of Science ID 000339646500015

    View details for PubMedID 25047619

  • a-Tubulin K40 acetylation is required for contact inhibition of proliferation and cell-substrate adhesion. Molecular biology of the cell Aguilar, A., Becker, L., Tedeschi, T., Heller, S., Iomini, C., Nachury, M. V. 2014; 25 (12): 1854-1866


    Acetylation of α-tubulin on lysine 40 marks long-lived microtubules in structures such as axons and cilia, and yet the physiological role of α-tubulin K40 acetylation is elusive. Although genetic ablation of the α-tubulin K40 acetyltransferase αTat1 in mice did not lead to detectable phenotypes in the developing animals, contact inhibition of proliferation and cell-substrate adhesion were significantly compromised in cultured αTat1(-/-) fibroblasts. First, αTat1(-/-) fibroblasts kept proliferating beyond the confluent monolayer stage. Congruently, αTat1(-/-) cells failed to activate Hippo signaling in response to increased cell density, and the microtubule association of the Hippo regulator Merlin was disrupted. Second, αTat1(-/-) cells contained very few focal adhesions, and their ability to adhere to growth surfaces was greatly impaired. Whereas the catalytic activity of αTAT1 was dispensable for monolayer formation, it was necessary for cell adhesion and restrained cell proliferation and activation of the Hippo pathway at elevated cell density. Because α-tubulin K40 acetylation is largely eliminated by deletion of αTAT1, we propose that acetylated microtubules regulate contact inhibition of proliferation through the Hippo pathway.

    View details for DOI 10.1091/mbc.E13-10-0609

    View details for PubMedID 24743598

  • Exome sequencing of Bardet-Biedl syndrome patient identifies a null mutation in the BBSome subunit BBIP1 (BBS18) JOURNAL OF MEDICAL GENETICS Scheidecker, S., Etard, C., Pierce, N. W., Geoffroy, V., Schaefer, E., Muller, J., Chennen, K., Flori, E., Pelletier, V., Poch, O., Marion, V., Stoetzel, C., Straehle, U., Nachury, M. V., Dollfus, H. 2014; 51 (2): 132-136


    Bardet-Biedl syndrome (BBS) is a recessive and genetically heterogeneous ciliopathy characterised by retinitis pigmentosa, obesity, kidney dysfunction, postaxial polydactyly, behavioural dysfunction and hypogonadism. 7 of the 17 BBS gene products identified to date assemble together with the protein BBIP1/BBIP10 into the BBSome, a protein complex that ferries signalling receptors to and from cilia.Exome sequencing performed on a sporadic BBS case revealed for the first time a homozygous stop mutation (NM_001195306: c.173T>G, p.Leu58*) in the BBIP1 gene. This mutation is pathogenic since no BBIP1 protein could be detected in fibroblasts from the patient, and BBIP1[Leu58*] is unable to associate with the BBSome subunit BBS4.These findings identify BBIP1 as the 18th BBS gene (BBS18) and suggest that BBSome assembly may represent a unifying pathomechanism for BBS.

    View details for DOI 10.1136/jmedgenet-2013-101785

    View details for Web of Science ID 000331191300009

    View details for PubMedID 24026985

  • Effects of tubulin acetylation and tubulin acetyltransferase binding on microtubule structure MOLECULAR BIOLOGY OF THE CELL Howes, S. C., Alushin, G. M., Shida, T., Nachury, M. V., Nogales, E. 2014; 25 (2): 257-266


    Tubulin undergoes posttranslational modifications proposed to specify microtubule subpopulations for particular functions. Most of these modifications occur on the C-termini of tubulin and may directly affect the binding of microtubule-associated proteins (MAPs) or motors. Acetylation of Lys-40 on α-tubulin is unique in that it is located on the luminal surface of microtubules, away from the interaction sites of most MAPs and motors. We investigate whether acetylation alters the architecture of microtubules or the conformation of tubulin, using cryo-electron microscopy (cryo-EM). No significant changes are observed based on protofilament distributions or microtubule helical lattice parameters. Furthermore, no clear differences in tubulin structure are detected between cryo-EM reconstructions of maximally deacetylated or acetylated microtubules. Our results indicate that the effect of acetylation must be highly localized and affect interaction with proteins that bind directly to the lumen of the microtubule. We also investigate the interaction of the tubulin acetyltransferase, αTAT1, with microtubules and find that αTAT1 is able to interact with the outside of the microtubule, at least partly through the tubulin C-termini. Binding to the outside surface of the microtubule could facilitate access of αTAT1 to its luminal site of action if microtubules undergo lateral opening between protofilaments.

    View details for DOI 10.1091/mbc.E13-07-0387

    View details for Web of Science ID 000330022900005

    View details for PubMedID 24227885

  • Cilia grow by taking a bite out of the cell. Developmental cell Pierce, N. W., Nachury, M. V. 2013; 27 (2): 126-127


    Autophagy and primary cilium assembly have long been known to be induced by the same conditions in cultured cells. Two recent studies in Nature-Tang et al. (2013) and Pampliega et al. (2013)-link the two processes, suggesting that a specialized autophagy pathway near the basal body regulates cilium assembly.

    View details for DOI 10.1016/j.devcel.2013.10.013

    View details for PubMedID 24176638

  • alpha TAT1 catalyses microtubule acetylation at clathrin-coated pits NATURE Montagnac, G., Meas-Yedid, V., Irondelle, M., Castro-Castro, A., Franco, M., Shida, T., Nachury, M. V., Benmerah, A., Olivo-Marin, J., Chavrier, P. 2013; 502 (7472): 567-?


    In most eukaryotic cells microtubules undergo post-translational modifications such as acetylation of α-tubulin on lysine 40, a widespread modification restricted to a subset of microtubules that turns over slowly. This subset of stable microtubules accumulates in cell protrusions and regulates cell polarization, migration and invasion. However, mechanisms restricting acetylation to these microtubules are unknown. Here we report that clathrin-coated pits (CCPs) control microtubule acetylation through a direct interaction of the α-tubulin acetyltransferase αTAT1 (refs 8, 9) with the clathrin adaptor AP2. We observe that about one-third of growing microtubule ends contact and pause at CCPs and that loss of CCPs decreases lysine 40 acetylation levels. We show that αTAT1 localizes to CCPs through a direct interaction with AP2 that is required for microtubule acetylation. In migrating cells, the polarized orientation of acetylated microtubules correlates with CCP accumulation at the leading edge, and interaction of αTAT1 with AP2 is required for directional migration. We conclude that microtubules contacting CCPs become acetylated by αTAT1. In migrating cells, this mechanism ensures the acetylation of microtubules oriented towards the leading edge, thus promoting directional cell locomotion and chemotaxis.

    View details for DOI 10.1038/nature12571

    View details for Web of Science ID 000325988400058

    View details for PubMedID 24097348

  • Structure of the alpha-tubulin acetyltransferase, alpha TAT1, and implications for tubulin-specific acetylation PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Friedmann, D. R., Aguilar, A., Fan, J., Nachury, M. V., Marmorstein, R. 2012; 109 (48): 19655-19660


    Protein acetylation is an important posttranslational modification with the recent identification of new substrates and enzymes, new links to disease, and modulators of protein acetylation for therapy. α-Tubulin acetyltransferase (αTAT1) is the major α-tubulin lysine-40 (K40) acetyltransferase in mammals, nematodes, and protozoa, and its activity plays a conserved role in several microtubule-based processes. Here, we present the X-ray crystal structure of the human αTAT1/acetyl-CoA complex. Together with structure-based mutagenesis, enzymatic analysis, and functional studies in cells, we elucidate the catalytic mechanism and mode of tubulin-specific acetylation. We find that αTAT1 has an overall fold similar to the Gcn5 histone acetyltransferase but contains a relatively wide substrate binding groove and unique structural elements that play important roles in α-tubulin-specific acetylation. Conserved aspartic acid and cysteine residues play important catalytic roles through a ternary complex mechanism. αTAT1 mutations have analogous effects on tubulin acetylation in vitro and in cells, demonstrating that it is the central determining factor of α-tubulin K40 acetylation levels in vivo. Together, these studies provide general insights into distinguishing features between histone and tubulin acetyltransferases, and they have specific implications for understanding the molecular basis of tubulin acetylation and for developing small molecule modulators of microtubule acetylation for therapy.

    View details for DOI 10.1073/pnas.1209357109

    View details for Web of Science ID 000312313900037

    View details for PubMedID 23071314

  • A Novel Protein LZTFL1 Regulates Ciliary Trafficking of the BBSome and Smoothened PLOS GENETICS Seo, S., Zhang, Q., Bugge, K., Breslow, D. K., Searby, C. C., Nachury, M. V., Sheffield, V. C. 2011; 7 (11)


    Many signaling proteins including G protein-coupled receptors localize to primary cilia, regulating cellular processes including differentiation, proliferation, organogenesis, and tumorigenesis. Bardet-Biedl Syndrome (BBS) proteins are involved in maintaining ciliary function by mediating protein trafficking to the cilia. However, the mechanisms governing ciliary trafficking by BBS proteins are not well understood. Here, we show that a novel protein, Leucine-zipper transcription factor-like 1 (LZTFL1), interacts with a BBS protein complex known as the BBSome and regulates ciliary trafficking of this complex. We also show that all BBSome subunits and BBS3 (also known as ARL6) are required for BBSome ciliary entry and that reduction of LZTFL1 restores BBSome trafficking to cilia in BBS3 and BBS5 depleted cells. Finally, we found that BBS proteins and LZTFL1 regulate ciliary trafficking of hedgehog signal transducer, Smoothened. Our findings suggest that LZTFL1 is an important regulator of BBSome ciliary trafficking and hedgehog signaling.

    View details for DOI 10.1371/journal.pgen.1002358

    View details for Web of Science ID 000297264500013

    View details for PubMedID 22072986

    View details for PubMedCentralID PMC3207910

  • Give chance a chance MOLECULAR BIOLOGY OF THE CELL Nachury, M. V. 2011; 22 (21): 3919-3920


    How did I get to become a cell biologist? Or, more generally, why do things happen the way they do? The answer provided by the philosopher Democritus and later adopted by Jacques Monod is "everything existing in the universe is the fruit of chance and necessity." While I read Monod's book Chance and Necessity as an undergraduate student, little did I appreciate the accuracy of this citation and how much of my scientific trajectory would be guided by chance.

    View details for DOI 10.1091/mbc.E11-05-0453

    View details for Web of Science ID 000296603300002

    View details for PubMedID 22039061

  • Primary Cilia: How to Keep the Riff-Raff in the Plasma Membrane CURRENT BIOLOGY Breslow, D. K., Nachury, M. V. 2011; 21 (11): R434-R436


    A recent report suggests that plasma membrane proteins are excluded from primary cilia via anchoring to the cortical actin cytoskeleton. These findings challenge the existence of a diffusion barrier at the base of the cilium.

    View details for DOI 10.1016/j.cub.2011.04.039

    View details for Web of Science ID 000291668100011

    View details for PubMedID 21640903

  • Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Westlake, C. J., Baye, L. M., Nachury, M. V., Wright, K. J., Ervin, K. E., Phu, L., Chalouni, C., Beck, J. S., Kirkpatrick, D. S., Slusarski, D. C., Sheffield, V. C., Scheller, R. H., Jackson, P. K. 2011; 108 (7): 2759-2764


    Sensory and signaling pathways are exquisitely organized in primary cilia. Bardet-Biedl syndrome (BBS) patients have compromised cilia and signaling. BBS proteins form the BBSome, which binds Rabin8, a guanine nucleotide exchange factor (GEF) activating the Rab8 GTPase, required for ciliary assembly. We now describe serum-regulated upstream vesicular transport events leading to centrosomal Rab8 activation and ciliary membrane formation. Using live microscopy imaging, we show that upon serum withdrawal Rab8 is observed to assemble the ciliary membrane in ∼100 min. Rab8-dependent ciliary assembly is initiated by the relocalization of Rabin8 to Rab11-positive vesicles that are transported to the centrosome. After ciliogenesis, Rab8 ciliary transport is strongly reduced, and this reduction appears to be associated with decreased Rabin8 centrosomal accumulation. Rab11-GTP associates with the Rabin8 COOH-terminal region and is required for Rabin8 preciliary membrane trafficking to the centrosome and for ciliogenesis. Using zebrafish as a model organism, we show that Rabin8 and Rab11 are associated with the BBS pathway. Finally, using tandem affinity purification and mass spectrometry, we determined that the transport protein particle (TRAPP) II complex associates with the Rabin8 NH(2)-terminal domain and show that TRAPP II subunits colocalize with centrosomal Rabin8 and are required for Rabin8 preciliary targeting and ciliogenesis.

    View details for DOI 10.1073/pnas.1018823108

    View details for Web of Science ID 000287377000029

    View details for PubMedID 21273506

  • The major alpha-tubulin K40 acetyltransferase alpha TAT1 promotes rapid ciliogenesis and efficient mechanosensation PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Shida, T., Cueva, J. G., Xu, Z., Goodman, M. B., Nachury, M. V. 2010; 107 (50): 21517-21522


    Long-lived microtubules found in ciliary axonemes, neuronal processes, and migrating cells are marked by α-tubulin acetylation on lysine 40, a modification that takes place inside the microtubule lumen. The physiological importance of microtubule acetylation remains elusive. Here, we identify a BBSome-associated protein that we name αTAT1, with a highly specific α-tubulin K40 acetyltransferase activity and a catalytic preference for microtubules over free tubulin. In mammalian cells, the catalytic activity of αTAT1 is necessary and sufficient for α-tubulin K40 acetylation. Remarkably, αTAT1 is universally and exclusively conserved in ciliated organisms, and is required for the acetylation of axonemal microtubules and for the normal kinetics of primary cilium assembly. In Caenorhabditis elegans, microtubule acetylation is most prominent in touch receptor neurons (TRNs) and MEC-17, a homolog of αTAT1, and its paralog αTAT-2 are required for α-tubulin acetylation and for two distinct types of touch sensation. Furthermore, in animals lacking MEC-17, αTAT-2, and the sole C. elegans K40α-tubulin MEC-12, touch sensation can be restored by expression of an acetyl-mimic MEC-12[K40Q]. We conclude that αTAT1 is the major and possibly the sole α-tubulin K40 acetyltransferase in mammals and nematodes, and that tubulin acetylation plays a conserved role in several microtubule-based processes.

    View details for DOI 10.1073/pnas.1013728107

    View details for Web of Science ID 000285521500055

    View details for PubMedID 21068373

  • Maxence Nachury: a transporting view of the primary cilium. Interview by Ben Short. journal of cell biology Nachury, M. 2010; 191 (3): 436-437

    View details for DOI 10.1083/jcb.1913pi

    View details for PubMedID 21041439

  • A Septin Diffusion Barrier at the Base of the Primary Cilium Maintains Ciliary Membrane Protein Distribution SCIENCE Hu, Q., Milenkovic, L., Jin, H., Scott, M. P., Nachury, M. V., Spiliotis, E. T., Nelson, W. J. 2010; 329 (5990): 436-439


    In animal cells, the primary cilium transduces extracellular signals through signaling receptors localized in the ciliary membrane, but how these ciliary membrane proteins are retained in the cilium is unknown. We found that ciliary membrane proteins were highly mobile, but their diffusion was impeded at the base of the cilium by a diffusion barrier. Septin 2 (SEPT2), a member of the septin family of guanosine triphosphatases that form a diffusion barrier in budding yeast, localized at the base of the ciliary membrane. SEPT2 depletion resulted in loss of ciliary membrane protein localization and Sonic hedgehog signal transduction, and inhibited ciliogenesis. Thus, SEPT2 is part of a diffusion barrier at the base of the ciliary membrane and is essential for retaining receptor-signaling pathways in the primary cilium.

    View details for DOI 10.1126/science.1191054

    View details for Web of Science ID 000280196500036

    View details for PubMedID 20558667

  • The perennial organelle: assembly and disassembly of the primary cilium JOURNAL OF CELL SCIENCE Seeley, E. S., Nachury, M. V. 2010; 123 (4): 511-518


    Primary cilia contain signaling receptors of diverse classes, and ciliary dysfunction results in a variety of developmental defects. Thus, primary cilia are thought to have an important role in sensing and transducing cellular signals. Although there is clear evidence demonstrating that these organelles are assembled and disassembled dynamically as cells progress through the cell cycle, the mechanisms by which the cell cycle controls the assembly and disassembly of the primary cilium remain poorly understood. In this Commentary, we review the basic cellular mechanisms that underlie the early stages of cilium assembly and discuss how the cell cycle communicates with the ciliation program. A commonly held view is that ciliation occurs exclusively in cells that have exited the cell cycle and entered quiescence or differentiation. However, this concept is at odds with the finding that, during development, many actively proliferating cells require cilia-mediated signaling pathways to instruct their developmental fate. Here, we reassess the quiescence-centric view of ciliation by reviewing historic and current literature. We discuss ample evidence that cilia are in fact present on many proliferating cells, and that a transient peak of ciliation before the G1-S transition might be tightly coupled to entry into the DNA replication phase. Finally, we touch on the relationship between the ciliation and cell-division cycles and the tissue distribution of primary cilia in order to highlight potential roles for the primary cilium in restraining cells from the hyperproliferative state that contributes to cancer.

    View details for DOI 10.1242/jcs.061093

    View details for Web of Science ID 000274594100003

    View details for PubMedID 20144999

  • Trafficking to the Ciliary Membrane: How to Get Across the Periciliary Diffusion Barrier? ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, VOL 26 Nachury, M. V., Seeley, E. S., Jin, H. 2010; 26: 59-87


    The primary cilium organizes numerous signal transduction cascades, and an understanding of signaling receptor trafficking to cilia is now emerging. A defining feature of cilia is the periciliary diffusion barrier that separates the ciliary and plasma membranes. Although lateral transport through this barrier may take place, polarized exocytosis to the base of the cilium has been the prevailing model for delivering membrane proteins to cilia. Key players for this polarized exocytosis model include the GTPases Rab8 and Rab11, the exocyst, and possibly the intraflagellar tranport machinery. In turn, the sorting of membrane proteins to cilia critically relies on the recognition of ciliary targeting signals by sorting machines such as the BBSome coat complex or the GTPase Arf4. Finally, some proteins need to exit from cilia, and ubiquitination may regulate this step. The stage is now set to dissect the interplay between signaling and regulated trafficking to and from cilia.

    View details for DOI 10.1146/annurev.cellbio.042308.113337

    View details for Web of Science ID 000284856700003

    View details for PubMedID 19575670

  • The BBSome CURRENT BIOLOGY Jin, H., Nachury, M. V. 2009; 19 (12): R472-R473

    View details for Web of Science ID 000267338500008

    View details for PubMedID 19549489

  • Constructing and Deconstructing Roles for the Primary Cilium in Tissue Architecture and Cancer PRIMARY CILIA Seeley, E. S., Nachury, M. V. 2009; 94: 299-313


    Primary cilia are exquisitely designed sensory machines that have evolved at least three distinct sensory modalities to monitor the extracellular environment. The presence and activation of growth factor, morphogen, and hormone receptors within the confines of the ciliary membrane, the intrinsic physical relationship between the ciliary axoneme and the centriole, and the preferential assembly of primary cilia on the apical surfaces of tissue epithelia highlight the importance of this organelle in the establishment and maintenance of tissue architecture and homeostasis. Accordingly, recent studies begin to suggest roles for these organelles in oncogenesis and tumor suppression. Here, we review the sensory properties of primary cilia, assess the "history" of the primary cilium in cancer, and draw upon recent findings in a discussion of how the primary cilium may influence tissue architecture and neoplasia.

    View details for DOI 10.1016/S0091-679X(08)94015-2

    View details for Web of Science ID 000272975500016

    View details for PubMedID 20362097

  • A BBSome Subunit Links Ciliogenesis, Microtubule Stability, and Acetylation DEVELOPMENTAL CELL Loktev, A. V., Zhang, Q., Beck, J. S., Searby, C. C., Scheetz, T. E., Bazan, J. F., Slusarski, D. C., Sheffield, V. C., Jackson, P. K., Nachury, M. V. 2008; 15 (6): 854-865


    Primary cilium dysfunction affects the development and homeostasis of many organs in Bardet-Biedl syndrome (BBS). We recently showed that seven highly conserved BBS proteins form a stable complex, the BBSome, that functions in membrane trafficking to and inside the primary cilium. We have now discovered a BBSome subunit that we named BBIP10. Similar to other BBSome subunits, BBIP10 localizes to the primary cilium, BBIP10 is present exclusively in ciliated organisms, and depletion of BBIP10 yields characteristic BBS phenotypes in zebrafish. Unexpectedly, BBIP10 is required for cytoplasmic microtubule polymerization and acetylation, two functions not shared with any other BBSome subunits. Strikingly, inhibition of the tubulin deacetylase HDAC6 restores microtubule acetylation in BBIP10-depleted cells, and BBIP10 physically interacts with HDAC6. BBSome-bound BBIP10 may therefore function to couple acetylation of axonemal microtubules and ciliary membrane growth.

    View details for DOI 10.1016/j.devcel.2008.11.001

    View details for Web of Science ID 000261631500009

    View details for PubMedID 19081074

  • Tandem affinity purification of the BBSome, a critical regulator of Rab8 in ciliogenesis SMALL GTPASES IN DISEASE, PT B Nachury, M. V. 2008; 439: 501-?


    Bardet-Biedl syndrome (BBS) is a hereditary disorder whose symptoms include obesity, retinal degeneration, and kidney cysts. Intriguingly, the cellular culprit of BBS seems to lie in the primary cilium, a "cellular antenna" used by a number of signaling pathways. Yet, despite the identification of 12 BBS genes, a consistent molecular pathway for BBS had so far remained elusive. The recent discovery of a stable complex of seven BBS proteins (the BBSome) considerably simplifies the apparent molecular complexity of BBS and provides a clear insight into the molecular basis of BBS. Most tellingly, the BBSome associates with Rabin8, the guanine nucleotide exchange factor for the small GTPase Rab8, and Rab8-GTP enters the primary cilium to promote extension of the ciliary membrane. Thus, BBS is likely caused by defects in vesicular transport to the primary cilium. This chapter describes methods used to purify the BBSome using a tandem affinity purification method and presents a variation of this technique to demonstrate the existence of a stable complex of BBS proteins by sucrose gradient fractionation. When combined with state-of-the art mass spectrometry, these methods can provide a nearly complete BBSome interactome containing factors such as Rabin8.

    View details for DOI 10.1016/S0076-6879(07)00434-X

    View details for Web of Science ID 000255021300034

    View details for PubMedID 18374185

  • A Rae1-containing ribonucleoprotein complex is required for mitotic spindle assembly Cell Blower MD*, Nachury MV*, Heald R, Weis K 2005; 121 (2): 223-234
  • Xenopus Cdc14 alpha/beta are localized to the nucleolus and centrosome and are required for embryonic cell division BMC CELL BIOLOGY Kaiser, B. K., Nachury, M. V., Gardner, B. E., Jackson, P. K. 2004; 5


    The dual specificity phosphatase Cdc14 has been shown to be a critical regulator of late mitotic events in several eukaryotes, including S. cerevisiae, S. pombe. C. elegans and H. sapiens. However, Cdc14 homologs have clearly evolved to regulate distinct cellular processes and to respond to regulatory signals important for these processes. The human paralogs hCdc14A and B are the only vertebrate Cdc14 homologues studied to date, but their functions are not well understood. Therefore, it is of great interest to examine the function Cdc14 homologs in other vertebrate species.We identified two open reading frames from Xenopus laevis closely related to human Cdc14A, called XCdc14alpha and XCdc14beta, although no obvious paralog of the hCdc14B was found. To begin a functional characterization of Xcdc14alpha and XCdc14beta, we raised polyclonal antibodies against a conserved region. These antibodies stained both the nucleolus and centrosome in interphase Xenopus tissue culture cells, and the mitotic centrosomes. GFP-tagged version of XCdc14alpha localized to the nucleulus and GFP-XCdc14beta localized to the centrosome, although not exclusively. XCdc14alpha was also both meiotically and mitotically phosphorylated. Injection of antibodies raised against a conserved region of XCdc14/beta into Xenopus embryos at the two-cell stage blocked division of the injected blastomeres, suggesting that activities of XCdc14alpha/beta are required for normal cell division.These results provide evidence that XCdc14alpha/beta are required for normal cellular division and are regulated by at least two mechanisms, subcellular localization and possibly phosphorylation. Due to the high sequence conservation between Xcdc14alpha and hCdc14A, it seems likely that both mechanisms will contribute to regulation of Cdc14 homologs in vertebrates.

    View details for DOI 10.1186/1471-2121-5-27

    View details for Web of Science ID 000222850900001

    View details for PubMedID 15251038

  • Importin beta is a mitotic target of the small GTPase ran in spindle assembly CELL Nachury, M. V., Maresca, T. J., Salmon, W. G., Waterman-Storer, C. M., Heald, R., Weis, K. 2001; 104 (1): 95-106


    The GTPase Ran has recently been shown to stimulate microtubule polymerization in mitotic extracts, but its mode of action is not understood. Here we show that the mitotic role of Ran is largely mediated by the nuclear transport factor importin beta. Importin beta inhibits spindle formation in vitro and in vivo and sequesters an aster promoting activity (APA) that consists of multiple, independent factors. One component of APA is the microtubule-associated protein NuMA. NuMA and other APA components are discharged from importin beta by RanGTP and induce spindle-like structures in the absence of centrosomes, chromatin, or Ran. We propose that RanGTP functions in mitosis as in interphase by locally releasing cargoes from transport factors. In mitosis, this promotes spindle assembly by organizing microtubules in the vicinity of chromosomes.

    View details for Web of Science ID 000166882300010

    View details for PubMedID 11163243

  • The direction of transport through the nuclear pore can be inverted PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Nachury, M. V., Weis, K. 1999; 96 (17): 9622-9627


    Transport of macromolecules across the nuclear envelope is an active process that depends on soluble factors including the GTPase Ran. Ran-GTP is predominantly located in the nucleus and has been shown to regulate cargo binding and release of import and export receptors in their respective target compartments. Recently, it was shown that transport of receptor-cargo complexes across the nuclear pore complex (NPC) does not depend on GTP-hydrolysis by Ran; however, the mechanism of translocation is still poorly understood. Here, we show that the direction of transport through the NPC can be inverted in the presence of high concentrations of cytoplasmic Ran-GTP. Under these conditions, two different classes of export cargoes are transported into the nucleus in the absence of GTP hydrolysis. The inverted transport is very rapid and can be blocked by known inhibitors of nuclear protein export. These results suggest that the NPC functions as a facilitated transport channel, allowing the selective translocation of receptor-cargo complexes. We conclude that the directionality of nucleocytoplasmic transport is determined mainly by the compartmentalized distribution of Ran-GTP.

    View details for Web of Science ID 000082098500034

    View details for PubMedID 10449743

  • Cloning and characterization of hSRP1 gamma, a tissue-specific nuclear transport factor PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Nachury, M. V., Ryder, U. W., Lamond, A. I., Weis, K. 1998; 95 (2): 582-587


    Nuclear import of proteins containing a nuclear localization signal (NLS) is dependent on the presence of a cytoplasmic NLS receptor, the GTPase Ran, and p10/ NTF2. The NLS receptor is a heterodimeric proteins consisting of subunits of approximately 60 and 97 kDa, which have been termed importin alpha/beta, karyopherin alpha/beta, or PTAC 58/ 97. Members of the 60-kDa/importin alpha subunit family directly bind to the NLS motif and have been shown to function as adaptors that tether NLS-containing proteins to the p97/ importin beta subunit and to the downstream transport machinery. Herein we report the identification and characterization of hSRP1 gamma, a human importin alpha homologue. The hSRP1 gamma protein is around 45% identical to the previously identified human importin alpha homologues hSRP1 alpha/Rch1 and NPI/ hSRP1. hSRP1 gamma can form a complex with importin beta and is able to mediate import of a BSA-NLS substrate in an in vitro nuclear import system. Interestingly, hSRP1 gamma shows a very selective expression pattern and is most abundantly expressed in skeletal muscle, representing more than 1% of the total protein in this tissue. A potential role for hSRP1 gamma in tissue-specific transport events is discussed.

    View details for Web of Science ID 000071606000028

    View details for PubMedID 9435235