All Publications


  • Risk-Based lung cancer screening: A systematic review. Lung cancer (Amsterdam, Netherlands) Toumazis, I., Bastani, M., Han, S. S., Plevritis, S. K. 2020; 147: 154–86

    Abstract

    Lung cancer remains the leading cause of cancer related deaths worldwide. Lung cancer screening using low-dose computed tomography (LDCT) has been shown to reduce lung cancer specific mortality. In 2013, the United States Preventive Services Task Force (USPSTF) recommended annual lung cancer screening with LDCT for smokers aged between 55 years to 80 years, with at least 30 pack-years of smoking exposure that currently smoke or who have quit smoking within 15 years. Risk-based lung cancer screening is an alternative approach that defines screening eligibility based on the personal risk of individuals. Selection of individuals for lung cancer screening based on their personal lung cancer risk has been shown to improve the sensitivity and specificity associated with the eligibility criteria of the screening program as compared to the 2013 USPSTF criteria. Numerous risk prediction models have been developed to estimate the lung cancer risk of individuals incorporating sociodemographic, smoking, and clinical risk factors associated with lung cancer, including age, smoking history, sex, race/ethnicity, personal and family history of cancer, and history of emphysema and chronic obstructive pulmonary disease (COPD), among others. Some risk prediction models include biomarker information, such as germline mutations or protein-based biomarkers as independent risk predictors, in addition to clinical, smoking, and sociodemographic risk factors. While, the majority of lung cancer risk prediction models are suitable for selecting high-risk individuals for lung cancer screening, some risk models have been developed to predict the probability of malignancy of screen-detected solidary pulmonary nodules or to optimize the screening frequency of eligible individuals by incorporating past screening findings. In this systematic review, we provide an overview of existing risk prediction models and their applications to lung cancer screening. We discuss potential strengths and limitations of lung cancer screening using risk prediction models and future research directions.

    View details for DOI 10.1016/j.lungcan.2020.07.007

    View details for PubMedID 32721652

  • Disparities of national lung cancer screening guidelines in the U.S. population. Journal of the National Cancer Institute Han, S. S., Chow, E., Ten Haaf, K., Toumazis, I., Cao, P., Bastani, M., Tammemagi, M., Jeon, J., Feuer, E., Meza, R., Plevritis, S. 2020

    Abstract

    BACKGROUND: Current U.S. Preventive Services Task Force (USPSTF) lung cancer screening guidelines are based on smoking history and age (55-80 y). These guidelines may miss those at higher risk, even at lower exposures of smoking or younger ages, due to other risk factors such as race, family history or comorbidity. In this study, we characterized the demographic and clinical profiles of those selected by risk-based screening criteria but missed by USPSTF guidelines in younger (50-54 y) and older (71-80 y) age groups.METHODS: We used data from the National Health Interview Survey, the CISNET Smoking History Generator, and results of logistic prediction models to simulate life-time lung cancer risk-factor data for 100,000 individuals in the 1950-1960 birth cohorts. We calculated age-specific 6-year lung cancer risk for each individual from ages 50-90 y using the PLCOm2012 model, and evaluated age-specific screening eligibility by USPSTF guidelines and by risk-based criteria (varying thresholds between 1.3%-2.5%).RESULTS: In the 1950 birth cohort, 5.4% would have been ineligible for screening by USPSTF criteria in their younger ages, but eligible based on risk-based criteria. Similarly, 10.4% of the cohort would be ineligible for screening by USPSTF in older ages. Notably, high proportions of Blacks were ineligible for screening by USPSTF criteria at younger (15.6%) and older (14.2%) ages, which were statistically significantly greater than those of Whites (4.8% and 10.8%, respectively, P<0.001). Similar results were observed with other risk thresholds and for the 1960 cohort.CONCLUSIONS: Further consideration is needed to incorporate comprehensive risk factors, including race/ethnicity, into lung cancer screening to reduce potential racial disparities.

    View details for DOI 10.1093/jnci/djaa013

    View details for PubMedID 32040195

  • Cost-Effectiveness Analysis of Lung Cancer Screening in the United States: A Comparative Modeling Study. Annals of internal medicine Criss, S. D., Cao, P., Bastani, M., Ten Haaf, K., Chen, Y., Sheehan, D. F., Blom, E. F., Toumazis, I., Jeon, J., de Koning, H. J., Plevritis, S. K., Meza, R., Kong, C. Y. 2019

    Abstract

    Recommendations vary regarding the maximum age at which to stop lung cancer screening: 80 years according to the U.S. Preventive Services Task Force (USPSTF), 77 years according to the Centers for Medicare & Medicaid Services (CMS), and 74 years according to the National Lung Screening Trial (NLST).To compare the cost-effectiveness of different stopping ages for lung cancer screening.By using shared inputs for smoking behavior, costs, and quality of life, 4 independently developed microsimulation models evaluated the health and cost outcomes of annual lung cancer screening with low-dose computed tomography (LDCT).The NLST; Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial; SEER (Surveillance, Epidemiology, and End Results) program; Nurses' Health Study and Health Professionals Follow-up Study; and U.S. Smoking History Generator.Current, former, and never-smokers aged 45 years from the 1960 U.S. birth cohort.45 years.Health care sector.Annual LDCT according to NLST, CMS, and USPSTF criteria.Incremental cost-effectiveness ratios (ICERs) with a willingness-to-pay threshold of $100 000 per quality-adjusted life-year (QALY).The 4 models showed that the NLST, CMS, and USPSTF screening strategies were cost-effective, with ICERs averaging $49 200, $68 600, and $96 700 per QALY, respectively. Increasing the age at which to stop screening resulted in a greater reduction in mortality but also led to higher costs and overdiagnosis rates.Probabilistic sensitivity analysis showed that the NLST and CMS strategies had higher probabilities of being cost-effective (98% and 77%, respectively) than the USPSTF strategy (52%).Scenarios assumed 100% screening adherence, and models extrapolated beyond clinical trial data.All 3 sets of lung cancer screening criteria represent cost-effective programs. Despite underlying uncertainty, the NLST and CMS screening strategies have high probabilities of being cost-effective.CISNET (Cancer Intervention and Surveillance Modeling Network) Lung Group, National Cancer Institute.

    View details for DOI 10.7326/M19-0322

    View details for PubMedID 31683314

  • A comparative modeling analysis of risk-based lung cancer screening strategies. Journal of the National Cancer Institute Ten Haaf, K., Bastani, M., Cao, P., Jeon, J., Toumazis, I., Han, S. S., Plevritis, S. K., Blom, E. F., Kong, C. Y., Tammemägi, M. C., Feuer, E. J., Meza, R., de Koning, H. J. 2019

    Abstract

    Risk-prediction models have been proposed to select individuals for lung cancer screening. However, their long-term effects are uncertain. This study evaluates long-term benefits and harms of risk-based screening compared to current United States Preventive Services Task Force (USPSTF) recommendations.Four independent natural-history models performed a comparative modeling study evaluating long-term benefits and harms of selecting individuals for lung cancer screening through risk-prediction models. 363 risk-based screening strategies varying by screening starting and stopping age, risk-prediction model used for eligibility (Bach, PLCOm2012, LCDRAT), and risk-threshold were evaluated for a 1950 U.S. birth-cohort. Among the evaluated outcomes were percentage of individuals ever screened, screens required, lung cancer deaths averted, life-years gained and overdiagnosis.Risk-based screening strategies requiring similar screens among individuals aged 55-80 as the USPSTF-criteria (corresponding risk-thresholds: Bach: 2.8%, PLCOm2012: 1.7%, LCDRAT: 1.7%) averted considerably more lung cancer deaths (Bach: 693, PLCOm2012: 698, LCDRAT: 696, USPSTF: 613). However, life-years gained were only modestly higher (Bach: 8,660, PLCOm2012: 8,862, LCDRAT, 8,631,USPSTF: 8,590) and risk-based strategies had more overdiagnosis (Bach: 149, PLCOm2012: 147, LCDRAT: 150, USPSTF: 115). Sensitivity analyses suggests excluding individuals with limited life-expectancies (<5 years) from screening retains the life-years gained by risk-based screening, while reducing overdiagnosis by > 65.3%.Risk-based lung cancer screening strategies prevent considerably more lung cancer deaths than current recommendations. However, they yield modest additional life-years and increased overdiagnosis due to predominantly selecting older individuals. Efficient implementation of risk-based lung cancer screening requires careful consideration of life-expectancy for determining optimal individual stopping ages.

    View details for DOI 10.1093/jnci/djz164

    View details for PubMedID 31566216

  • An evolutionary simulation optimization framework for interruptible load management in the smart grid SUSTAINABLE CITIES AND SOCIETY Bastani, M., Thanos, A. E., Damgacioglu, H., Celik, N., Chen, C. 2018; 41: 802–9