All Publications

  • Simulations of valence excited states in coordination complexes reached through hard X-ray scattering. Physical chemistry chemical physics : PCCP Källman, E. n., Guo, M. n., Delcey, M. G., Meyer, D. A., Gaffney, K. J., Lindh, R. n., Lundberg, M. n. 2020; 22 (16): 8325–35


    Hard X-ray spectroscopy selectively probes metal sites in complex environments. Resonant inelastic X-ray scattering (RIXS) makes it is possible to directly study metal-ligand interactions through local valence excitations. Here multiconfigurational wavefunction simulations are used to model valence K pre-edge RIXS for three metal-hexacyanide complexes by coupling the electric dipole-forbidden excitations with dipole-allowed valence-to-core emission. Comparisons between experimental and simulated spectra makes it possible to evaluate the simulation accuracy and establish a best-modeling practice. The calculations give correct descriptions of all LMCT excitations in the spectra, although energies and intensities are sensitive to the description of dynamical electron correlation. The consistent treatment of all complexes shows that simulations can rationalize spectral features. The dispersion in the manganese(iii) spectrum comes from unresolved multiple resonances rather than fluorescence, and the splitting is mainly caused by differences in spatial orientation between holes and electrons. The simulations predict spectral features that cannot be resolved in current experimental data sets and the potential for observing d-d excitations is also explored. The latter can be of relevance for non-centrosymmetric systems with more intense K pre-edges. These ab initio simulations can be used to both design and interpret high-resolution X-ray scattering experiments.

    View details for DOI 10.1039/d0cp01003k

    View details for PubMedID 32236271

  • Hot Branching Dynamics in a Light-Harvesting Iron Carbene Complex Revealed by Ultrafast X-ray Emission Spectroscopy. Angewandte Chemie (International ed. in English) Tatsuno, H. n., Kjaer, K. S., Kunnus, K. n., Harlang, T. C., Timm, C. n., Guo, M. n., Chàbera, P. n., Fredin, L. A., Hartsock, R. W., Reinhard, M. E., Koroidov, S. n., Li, L. n., Cordones, A. A., Gordivska, O. n., Prakash, O. n., Liu, Y. n., Laursen, M. G., Biasin, E. n., Hansen, F. B., Vester, P. n., Christensen, M. n., Haldrup, K. n., Németh, Z. n., Sárosiné Szemes, D. n., Bajnóczi, É. n., Vankó, G. n., Van Driel, T. B., Alonso-Mori, R. n., Glownia, J. M., Nelson, S. n., Sikorski, M. n., Lemke, H. T., Sokaras, D. n., Canton, S. E., Dohn, A. O., Møller, K. B., Nielsen, M. M., Gaffney, K. J., Wärnmark, K. n., Sundström, V. n., Persson, P. n., Uhlig, J. n. 2019


    Iron N-heterocyclic carbene (NHC) complexes have received a great deal of attention recently because of their growing potential as light sensitizers or photocatalysts. We present a sub-ps X-ray spectroscopy study of an FeII NHC complex that identifies and quantifies the states involved in the deactivation cascade after light absorption. Excited molecules relax back to the ground state along two pathways: After population of a hot 3 MLCT state, from the initially excited 1 MLCT state, 30 % of the molecules undergo ultrafast (150 fs) relaxation to the 3 MC state, in competition with vibrational relaxation and cooling to the relaxed 3 MLCT state. The relaxed 3 MLCT state then decays much more slowly (7.6 ps) to the 3 MC state. The 3 MC state is rapidly (2.2 ps) deactivated to the ground state. The 5 MC state is not involved in the deactivation pathway. The ultrafast partial deactivation of the 3 MLCT state constitutes a loss channel from the point of view of photochemical efficiency and highlights the necessity to screen transition-metal complexes for similar ultrafast decays to optimize photochemical performance.

    View details for DOI 10.1002/anie.201908065

    View details for PubMedID 31602726

  • Probing the oxidation state of transition metal complexes: a case study on how charge and spin densities determine Mn L-edge X-ray absorption energies CHEMICAL SCIENCE Kubin, M., Guo, M., Kroll, T., Loechel, H., Kallman, E., Baker, M. L., Mitzner, R., Gul, S., Kern, J., Foehlisch, A., Erko, A., Bergmann, U., Yachandra, V., Yano, J., Lundberg, M., Wernet, P. 2018; 9 (33): 6813–29

    View details for DOI 10.1039/c8sc00550h

    View details for Web of Science ID 000443270300009

  • Fingerprints of electronic, spin and structural dynamics from resonant inelastic soft x-ray scattering in transient photo-chemical species Norell, J., Jay, R., Hantschmann, M., Eckert, S., Guo, M., Gaffney, K., Wernet, P., Lundberg, M., Foehlisch, A., Odelius, M. AMER CHEMICAL SOC. 2018
  • Direct Determination of Absolute Absorption Cross Sections at the L-Edge of Dilute Mn Complexes in Solution Using a Transmission Flatjet INORGANIC CHEMISTRY Kubin, M., Guo, M., Ekimova, M., Baker, M. L., Kroll, T., Kallman, E., Kern, J., Yachandra, V. K., Yano, J., Nibbering, E. J., Lundberg, M., Wernet, P. 2018; 57 (9): 5449–62


    The 3d transition metals play a pivotal role in many charge transfer processes in catalysis and biology. X-ray absorption spectroscopy at the L-edge of metal sites probes metal 2p-3d excitations, providing key access to their valence electronic structure, which is crucial for understanding these processes. We report L-edge absorption spectra of MnII(acac)2 and MnIII(acac)3 complexes in solution, utilizing a liquid flatjet for X-ray absorption spectroscopy in transmission mode. With this, we derive absolute absorption cross-sections for the L-edge transitions with peak magnitudes as large as 12 and 9 Mb for MnII(acac)2 and MnIII(acac)3, respectively. We provide insight into the electronic structure with ab initio restricted active space calculations of these L-edge transitions, reproducing the experimental spectra with excellent agreement in terms of shapes, relative energies, and relative intensities for the two complexes. Crystal field multiplet theory is used to assign spectral features in terms of the electronic structure. Comparison to charge transfer multiplet calculations reveals the importance of charge transfer in the core-excited final states. On the basis of our experimental observations, we extrapolate the feasibility of 3d transition metal L-edge absorption spectroscopy using the liquid flatjet approach in probing highly dilute biological solution samples and possible extensions to table-top soft X-ray sources.

    View details for DOI 10.1021/acs.inorgchem.8b00419

    View details for Web of Science ID 000431833500077

    View details for PubMedID 29634280

    View details for PubMedCentralID PMC5972834

  • Fingerprints of electronic, spin and structural dynamics from resonant inelastic soft X-ray scattering in transient photo-chemical species PHYSICAL CHEMISTRY CHEMICAL PHYSICS Norell, J., Jay, R. M., Hantschmann, M., Eckert, S., Guo, M., Gaffney, K. J., Wernet, P., Lundberg, M., Foehlisch, A., Odelius, M. 2018; 20 (10): 7243–53


    We describe how inversion symmetry separation of electronic state manifolds in resonant inelastic soft X-ray scattering (RIXS) can be applied to probe excited-state dynamics with compelling selectivity. In a case study of Fe L3-edge RIXS in the ferricyanide complex Fe(CN)63-, we demonstrate with multi-configurational restricted active space spectrum simulations how the information content of RIXS spectral fingerprints can be used to unambiguously separate species of different electronic configurations, spin multiplicities, and structures, with possible involvement in the decay dynamics of photo-excited ligand-to-metal charge-transfer. Specifically, we propose that this could be applied to confirm or reject the presence of a hitherto elusive transient Quartet species. Thus, RIXS offers a particular possibility to settle a recent controversy regarding the decay pathway, and we expect the technique to be similarly applicable in other model systems of photo-induced dynamics.

    View details for DOI 10.1039/c7cp08326b

    View details for Web of Science ID 000429286100052

    View details for PubMedID 29484313

    View details for PubMedCentralID PMC5885270