Education & Certifications


  • Master of Science, Stanford University, BIOE-MS (2018)

Stanford Advisors


All Publications


  • A neural network to predict the knee adduction moment in patients with osteoarthritis using anatomical landmarks obtainable from 2D video analysis. Osteoarthritis and cartilage Boswell, M. A., Uhlrich, S. D., Kidzinski, L., Thomas, K., Kolesar, J. A., Gold, G. E., Beaupre, G. S., Delp, S. L. 2021

    Abstract

    OBJECTIVE: The knee adduction moment (KAM) can inform treatment of medial knee osteoarthritis; however, measuring the KAM requires an expensive gait analysis laboratory. We evaluated the feasibility of predicting the peak KAM during natural and modified walking patterns using the positions of anatomical landmarks that could be identified from video analysis.METHOD: Using inverse dynamics, we calculated the KAM for 86 individuals (64 with knee osteoarthritis, 22 without) walking naturally and with foot progression angle modifications. We trained a neural network to predict the peak KAM using the 3-dimensional positions of 13 anatomical landmarks measured with motion capture (3D neural network). We also trained models to predict the peak KAM using 2-dimensional subsets of the dataset to simulate 2-dimensional video analysis (frontal and sagittal plane neural networks). Model performance was evaluated on a held-out, 8-person test set that included steps from all trials.RESULTS: The 3D neural network predicted the peak KAM for all test steps with r2=0.78. This model predicted individuals' average peak KAM during natural walking with r2=0.86 and classified which 15° foot progression angle modifications reduced the peak KAM with accuracy=0.85. The frontal plane neural network predicted peak KAM with similar accuracy (r2=0.85) to the 3D neural network, but the sagittal plane neural network did not (r2=0.14).CONCLUSION: Using the positions of anatomical landmarks from motion capture, a neural network accurately predicted the peak KAM during natural and modified walking. This study demonstrates the feasibility of measuring the peak KAM using positions obtainable from 2D video analysis.

    View details for DOI 10.1016/j.joca.2020.12.017

    View details for PubMedID 33422707