Mengxi Li
Ph.D. Student in Electrical Engineering, admitted Autumn 2018
All Publications
-
Influencing leading and following in human-robot teams
AUTONOMOUS ROBOTS
2021
View details for DOI 10.1007/s10514-021-10016-7
View details for Web of Science ID 000712196100002
-
Learning latent actions to control assistive robots
AUTONOMOUS ROBOTS
2021: 1-33
Abstract
Assistive robot arms enable people with disabilities to conduct everyday tasks on their own. These arms are dexterous and high-dimensional; however, the interfaces people must use to control their robots are low-dimensional. Consider teleoperating a 7-DoF robot arm with a 2-DoF joystick. The robot is helping you eat dinner, and currently you want to cut a piece of tofu. Today's robots assume a pre-defined mapping between joystick inputs and robot actions: in one mode the joystick controls the robot's motion in the x-y plane, in another mode the joystick controls the robot's z-yaw motion, and so on. But this mapping misses out on the task you are trying to perform! Ideally, one joystick axis should control how the robot stabs the tofu, and the other axis should control different cutting motions. Our insight is that we can achieve intuitive, user-friendly control of assistive robots by embedding the robot's high-dimensional actions into low-dimensional and human-controllable latent actions. We divide this process into three parts. First, we explore models for learning latent actions from offline task demonstrations, and formalize the properties that latent actions should satisfy. Next, we combine learned latent actions with autonomous robot assistance to help the user reach and maintain their high-level goals. Finally, we learn a personalized alignment model between joystick inputs and latent actions. We evaluate our resulting approach in four user studies where non-disabled participants reach marshmallows, cook apple pie, cut tofu, and assemble dessert. We then test our approach with two disabled adults who leverage assistive devices on a daily basis.
View details for DOI 10.1007/s10514-021-10005-w
View details for Web of Science ID 000681168800001
View details for PubMedID 34366568
View details for PubMedCentralID PMC8335729
-
Learning Human Objectives from Sequences of Physical Corrections
IEEE. 2021: 2877-2883
View details for DOI 10.1109/ICRA48506.2021.9560829
View details for Web of Science ID 000765738802057
-
Learning User-Preferred Mappings for Intuitive Robot Control
IEEE. 2020: 10960-10967
View details for DOI 10.1109/IROS45743.2020.9340909
View details for Web of Science ID 000724145800103
-
Influencing Leading and Following in Human-Robot Teams
MIT PRESS. 2019
View details for Web of Science ID 000570976800074