Honors & Awards


  • Ruth L. Kirschstein National Research Service Award (F31), National Cancer Institute (2019)
  • Chemistry/Biology Interface Predoctoral Training Program, Stanford ChEM-H (2015)

Education & Certifications


  • Master of Science, Stanford University, BIOE-MS (2017)
  • B.S., Cornell University, Chemical Engineering (2015)

Stanford Advisors


2018-19 Courses


All Publications


  • Physical Principles of Membrane Shape Regulation by the Glycocalyx. Cell Shurer, C. R., Kuo, J. C., Roberts, L. M., Gandhi, J. G., Colville, M. J., Enoki, T. A., Pan, H., Su, J., Noble, J. M., Hollander, M. J., O'Donnell, J. P., Yin, R., Pedram, K., Mockl, L., Kourkoutis, L. F., Moerner, W. E., Bertozzi, C. R., Feigenson, G. W., Reesink, H. L., Paszek, M. J. 2019

    Abstract

    Cells bend their plasma membranes into highly curved forms to interact with the local environment, but how shape generation is regulated is not fully resolved. Here, we report a synergy between shape-generating processes in the cell interior and the external organization and composition of the cell-surface glycocalyx. Mucin biopolymers and long-chain polysaccharides within the glycocalyx can generate entropic forces that favor or disfavor the projection of spherical and finger-like extensions from the cell surface. A polymer brush model of the glycocalyx successfully predicts the effects of polymer size and cell-surface density on membrane morphologies. Specific glycocalyx compositions can also induce plasma membrane instabilities to generate more exotic undulating and pearled membrane structures and drive secretion of extracellular vesicles. Together, our results suggest a fundamental role for the glycocalyx in regulating curved membrane features that serve in communication between cells and with the extracellular matrix.

    View details for PubMedID 31056282

  • A bulky glycocalyx fosters metastasis formation by promoting G1 cell cycle progression ELIFE Woods, E. C., Kai, F., Barnes, J., Pedram, K., Pickup, M. W., Hollander, M. J., Weaver, V. M., Bertozzi, C. R. 2017; 6

    Abstract

    Metastasis depends upon cancer cell growth and survival within the metastatic niche. Tumors which remodel their glycocalyces, by overexpressing bulky glycoproteins like mucins, exhibit a higher predisposition to metastasize, but the role of mucins in oncogenesis remains poorly understood. Here we report that a bulky glycocalyx promotes the expansion of disseminated tumor cells in vivo by fostering integrin adhesion assembly to permit G1 cell cycle progression. We engineered tumor cells to display glycocalyces of various thicknesses by coating them with synthetic mucin-mimetic glycopolymers. Cells adorned with longer glycopolymers showed increased metastatic potential, enhanced cell cycle progression, and greater levels of integrin-FAK mechanosignaling and Akt signaling in a syngeneic mouse model of metastasis. These effects were mirrored by expression of the ectodomain of cancer-associated mucin MUC1. These findings functionally link mucinous proteins with tumor aggression, and offer a new view of the cancer glycocalyx as a major driver of disease progression.

    View details for PubMedID 29266001