Honors & Awards

  • European Doctoral Award, European Society of Biomaterials (September 2011)
  • Front Cover Feature, Tissue Engineering (2009)
  • Best Poster Award, European Society of Biomaterials (2006)
  • Medtronic Award: Highest Achieving Graduate (Biomedical Engineering), Medtronic (2005)

Professional Education

  • Doctor of Philosophy, Nat'lUnivIrelandGalway (2010)
  • Bachelor of Engineering, National University of Ireland, Galway, Biomedical Engineering (2005)

Stanford Advisors

  • Fan Yang, Postdoctoral Faculty Sponsor

Journal Articles

  • Novel biological strategies for treatment of wear particle-induced periprosthetic osteolysis of orthopaedic implants for joint replacement. Journal of the Royal Society, Interface / the Royal Society Goodman, S. B., Gibon, E., Pajarinen, J., Lin, T., Keeney, M., Ren, P., Nich, C., Yao, Z., Egashira, K., Yang, F., KONTTINEN, Y. T. 2014; 11 (93): 20130962-?


    Wear particles and by-products from joint replacements and other orthopaedic implants may result in a local chronic inflammatory and foreign body reaction. This may lead to persistent synovitis resulting in joint pain and swelling, periprosthetic osteolysis, implant loosening and pathologic fracture. Strategies to modulate the adverse effects of wear debris may improve the function and longevity of joint replacements and other orthopaedic implants, potentially delaying or avoiding complex revision surgical procedures. Three novel biological strategies to mitigate the chronic inflammatory reaction to orthopaedic wear particles are reported. These include (i) interference with systemic macrophage trafficking to the local implant site, (ii) modulation of macrophages from an M1 (pro-inflammatory) to an M2 (anti-inflammatory, pro-tissue healing) phenotype in the periprosthetic tissues, and (iii) local inhibition of the transcription factor nuclear factor kappa B (NF-κB) by delivery of an NF-κB decoy oligodeoxynucleotide, thereby interfering with the production of pro-inflammatory mediators. These three approaches have been shown to be viable strategies for mitigating the undesirable effects of wear particles in preclinical studies. Targeted local delivery of specific biologics may potentially extend the lifetime of orthopaedic implants.

    View details for DOI 10.1098/rsif.2013.0962

    View details for PubMedID 24478281

  • Mutant MCP-1 protein delivery from layer-by-layer coatings on orthopedic implants to modulate inflammatory response. Biomaterials Keeney, M., Waters, H., Barcay, K., Jiang, X., Yao, Z., Pajarinen, J., Egashira, K., Goodman, S. B., Yang, F. 2013; 34 (38): 10287-10295


    Total joint replacement (TJR) is a common and effective surgical procedure for hip or knee joint reconstruction. However, the production of wear particles is inevitable for all TJRs, which activates macrophages and initiates an inflammatory cascade often resulting in bone loss, prosthetic loosening and eventual TJR failure. Macrophage Chemoattractant Protein-1 (MCP-1) is one of the most potent cytokines responsible for macrophage cell recruitment, and previous studies suggest that mutant MCP-1 proteins such as 7ND may be used as a decoy drug to block the receptor and reduce inflammatory cell recruitment. Here we report the development of a biodegradable, layer-by-layer (LBL) coating platform that allows efficient loading and controlled release of 7ND proteins from the surface of orthopedic implants using as few as 14 layers. Scanning electron microscopy and fluorescence imaging confirmed effective coating using the LBL procedure on titanium rods. 7ND protein loading concentration and release kinetics can be modulated by varying the polyelectrolytes of choice, the polymer chemistry, the pH of the polyelectrolyte solution, and the degradation rate of the LBL assembly. The released 7ND from LBL coating retained its bioactivity and effectively reduced macrophage migration towards MCP-1. Finally, the LBL coating remained intact following a femoral rod implantation procedure as determined by immunostaining of the 7ND coating. The LBL platform reported herein may be applied for in situ controlled release of 7ND protein from orthopedic implants, to reduce wear particle-induced inflammatory responses in an effort to prolong the lifetime of implants.

    View details for DOI 10.1016/j.biomaterials.2013.09.028

    View details for PubMedID 24075408

  • Modulating polymer chemistry to enhance non-viral gene delivery inside hydrogels with tunable matrix stiffness. Biomaterials Keeney, M., Onyiah, S., Zhang, Z., Tong, X., Han, L., Yang, F. 2013; 34 (37): 9657-9665


    Non-viral gene delivery holds great promise for promoting tissue regeneration, and offers a potentially safer alternative than viral vectors. Great progress has been made to develop biodegradable polymeric vectors for non-viral gene delivery in 2D culture, which generally involves isolating and modifying cells in vitro, followed by subsequent transplantation in vivo. Scaffold-mediated gene delivery may eliminate the need for the multiple-step process in vitro, and allows sustained release of nucleic acids in situ. Hydrogels are widely used tissue engineering scaffolds given their tissue-like water content, injectability and tunable biochemical and biophysical properties. However, previous attempts on developing hydrogel-mediated non-viral gene delivery have generally resulted in low levels of transgene expression inside 3D hydrogels, and increasing hydrogel stiffness further decreased such transfection efficiency. Here we report the development of biodegradable polymeric vectors that led to efficient gene delivery inside poly(ethylene glycol) (PEG)-based hydrogels with tunable matrix stiffness. Photocrosslinkable gelatin was maintained constant in the hydrogel network to allow cell adhesion. We identified a lead biodegradable polymeric vector, E6, which resulted in increased polyplex stability, DNA protection and achieved sustained high levels of transgene expression inside 3D PEG-DMA hydrogels for at least 12 days. Furthermore, we demonstrated that E6-based polyplexes allowed efficient gene delivery inside hydrogels with tunable stiffness ranging from 2 to 175 kPa, with the peak transfection efficiency observed in hydrogels with intermediate stiffness (28 kPa). The reported hydrogel-mediated gene delivery platform using biodegradable polyplexes may serve as a local depot for sustained transgene expression in situ to enhance tissue engineering across broad tissue types.

    View details for DOI 10.1016/j.biomaterials.2013.08.050

    View details for PubMedID 24011715

  • Development of Poly(ß-amino ester)-Based Biodegradable Nanoparticles for Nonviral Delivery of Minicircle DNA. ACS nano Keeney, M., Ong, S., Padilla, A., Yao, Z., Goodman, S., Wu, J. C., Yang, F. 2013; 7 (8): 7241-7250


    Gene therapy provides a powerful tool for regulating cellular processes and tissue repair. Minicircle (MC) DNA are supercoiled DNA molecules free of bacterial plasmid backbone elements and have been reported to enhance prolonged gene expression compared to conventional plasmids. Despite the great promise of MC DNA for gene therapy, methods for safe and efficient MC DNA delivery remain lacking. To overcome this bottleneck, here we report the development of a poly(β-amino ester) (PBAE)-based, biodegradable nanoparticulate platform for efficient delivery of MC DNA driven by a Ubc promoter in vitro and in vivo. By synthesizing and screening a small library of 18 PBAE polymers with different backbone and end-group chemistry, we identified lead cationic PBAE structures that can complex with minicircle DNA to form nanoparticles, and delivery efficiency can be further modulated by tuning PBAE chemistry. Using human embryonic kidney 293 cells and mouse embryonic fibroblasts as model cell types, we identified a few PBAE polymers that allow efficient MC delivery at levels that are comparable or even surpassing Lipofectamine 2000. The biodegradable nature of PBAE-based nanoparticles facilitates in vivo applications and clinical translation. When injected via intraperitoneal route in vivo, MC alone resulted in high transgene expression, and a lead PBAE/MC nanoparticle formulation achieved a further 2-fold increase in protein expression compared to MC alone. Together, our results highlight the promise of PBAE-based nanoparticles as promising nonviral gene carriers for MC delivery, which may provide a valuable tool for broad applications of MC DNA-based gene therapy.

    View details for DOI 10.1021/nn402657d

    View details for PubMedID 23837668

  • The future of biologic coatings for orthopaedic implants BIOMATERIALS Goodman, S. B., Yao, Z., Keeney, M., Yang, F. 2013; 34 (13): 3174-3183


    Implants are widely used for orthopaedic applications such as fixing fractures, repairing non-unions, obtaining a joint arthrodesis, total joint arthroplasty, spinal reconstruction, and soft tissue anchorage. Previously, orthopaedic implants were designed simply as mechanical devices; the biological aspects of the implant were a byproduct of stable internal/external fixation of the device to the surrounding bone or soft tissue. More recently, biologic coatings have been incorporated into orthopaedic implants in order to modulate the surrounding biological environment. This opinion article reviews current and potential future use of biologic coatings for orthopaedic implants to facilitate osseointegration and mitigate possible adverse tissue responses including the foreign body reaction and implant infection. While many of these coatings are still in the preclinical testing stage, bioengineers, material scientists and surgeons continue to explore surface coatings as a means of improving clinical outcome of patients undergoing orthopaedic surgery.

    View details for DOI 10.1016/j.biomaterials.2013.01.074

    View details for Web of Science ID 000316770100003

    View details for PubMedID 23391496

  • CD90 (Thy-1)-Positive Selection Enhances Osteogenic Capacity of Human Adipose-Derived Stromal Cells TISSUE ENGINEERING PART A Chung, M. T., Liu, C., Hyun, J. S., Lo, D. D., Montoro, D. T., Hasegawa, M., Li, S., Sorkin, M., Rennert, R., Keeney, M., Yang, F., Quarto, N., Longaker, M. T., Wan, D. C. 2013; 19 (7-8): 989-997


    Stem cell-based bone tissue engineering with adipose-derived stromal cells (ASCs) has shown great promise for revolutionizing treatment of large bone deficits. However, there is still a lack of consensus on cell surface markers identifying osteoprogenitors. Fluorescence-activated cell sorting has identified a subpopulation of CD105(low) cells with enhanced osteogenic differentiation. The purpose of the present study was to compare the ability of CD90 (Thy-1) to identify osteoprogenitors relative to CD(105).Unsorted cells, CD90(+), CD90(-), CD105(high), and CD105(low) cells were treated with an osteogenic differentiation medium. For evaluation of in vitro osteogenesis, alkaline phosphatase (ALP) staining and alizarin red staining were performed at 7 days and 14 days, respectively. RNA was harvested after 7 and 14 days of differentiation, and osteogenic gene expression was examined by quantitative real-time polymerase chain reaction. For evaluation of in vivo osteogenesis, critical-sized (4-mm) calvarial defects in nude mice were treated with the hydroxyapatite-poly(lactic-co-glycolic acid) scaffold seeded with the above-mentioned subpopulations. Healing was followed using micro-CT scans for 8 weeks. Calvaria were harvested at 8 weeks postoperatively, and sections were stained with Movat's Pentachrome.Transcriptional analysis revealed that the CD90(+) subpopulation was enriched for a more osteogenic subtype relative to the CD105(low) subpopulation. Staining at day 7 for ALP was greatest in the CD90(+) cells, followed by the CD105(low) cells. Staining at day 14 for alizarin red demonstrated the greatest amount of mineralized extracellular matrix in the CD90(+) cells, again followed by the CD105(low) cells. Quantification of in vivo healing at 2, 4, 6, and 8weeks postoperatively demonstrated increased bone formation in defects treated with CD90(+) ASCs relative to all other groups. On Movat's Pentachrome-stained sections, defects treated with CD90(+) cells showed the most robust bony regeneration. Defects treated with CD90(-) cells, CD105(high) cells, and CD105(low) cells demonstrated some bone formation, but to a lesser degree when compared with the CD90(+) group.While CD105(low) cells have previously been shown to possess an enhanced osteogenic potential, we found that CD90(+) cells are more capable of forming bone both in vitro and in vivo. These data therefore suggest that CD90 may be a more effective marker than CD105 to isolate a highly osteogenic subpopulation for bone tissue engineering.

    View details for DOI 10.1089/ten.tea.2012.0370

    View details for Web of Science ID 000315951500016

    View details for PubMedID 23216074

  • The effects of interactive mechanical and biochemical niche signaling on osteogenic differentiation of adipose-derived stem cells using combinatorial hydrogels ACTA BIOMATERIALIA Nii, M., Lai, J. H., Keeney, M., Han, L., Behn, A., Imanbayev, G., Yang, F. 2013; 9 (3): 5475-5483


    Stem cells reside in a multi-factorial environment containing biochemical and mechanical signals. Changing biochemical signals in most scaffolds often leads to simultaneous changes in mechanical properties, which makes it difficult to elucidate the complex interplay between niche cues. Combinatorial studies on cell-material interactions have emerged as a tool to facilitate analyses of stem cell responses to various niche cues, but most studies to date have been performed on two-dimensional environments. Here we developed three-dimensional combinatorial hydrogels with independent control of biochemical and mechanical properties to facilitate analysis of interactive biochemical and mechanical signaling on adipose-derived stem cell osteogenesis in three dimensions. Our results suggest that scaffold biochemical and mechanical signals synergize only at specific combinations to promote bone differentiation. Leading compositions were identified to have intermediate stiffness (?55kPa) and low concentration of fibronectin (10?g ml(-1)), which led to an increase in osteocalcin gene expression of over 130-fold. Our results suggest that scaffolds with independently tunable niche cues could provide a powerful tool for conducting mechanistic studies to decipher how complex niche cues regulate stem cell fate in three dimensions, and facilitate rapid identification of optimal niche cues that promote desirable cellular processes or tissue regeneration.

    View details for DOI 10.1016/j.actbio.2012.11.002

    View details for Web of Science ID 000315536000007

    View details for PubMedID 23153761

  • Effects of Polymer End-Group Chemistry and Order of Deposition on Controlled Protein Delivery from Layer-by-Layer Assembly BIOMACROMOLECULES Keeney, M., Mathur, M., Cheng, E., Tong, X., Yang, F. 2013; 14 (3): 794-800


    Layer-by-layer (LBL) assembly is an attractive platform for controlled release of biologics given its mild fabrication process and versatility in coating substrates of any shape. Proteins can be incorporated into LBL coatings by sequentially depositing oppositely charged polyelectrolytes, which self-assemble into nanoscale films on medical devices or tissue engineering scaffolds. However, previously reported LBL platforms often require the use of a few hundred layers to avoid burst release, which hinders their broad translation due to the lengthy fabrication process, cost, and batch-to-batch variability. Here we report a biodegradable LBL platform composed of only 10 layers with tunable protein release kinetics, which is an order of magnitude less than previously reported LBL platforms. We performed a combinatorial study to examine the effects of polymer chemistry and order of deposition of poly(?-amino) esters on protein release kinetics under 81 LBL assembly conditions. Using the optimal "polyelectrolyte couples" for constructing the LBL film, basic fibroblast growth factor (bFGF) was released gradually over 14 days with retained biological activity to stimulate cell proliferation. The method reported herein is applicable for coating various substrates including metals, polymers, and ceramics and may be used for a broad range of biomedical and tissue engineering applications.

    View details for DOI 10.1021/bm3018559

    View details for Web of Science ID 000316044700024

    View details for PubMedID 23360295

  • Programming stem cells for therapeutic angiogenesis using biodegradable polymeric nanoparticles. Journal of visualized experiments : JoVE Keeney, M., Deveza, L., Yang, F. 2013


    Controlled vascular growth is critical for successful tissue regeneration and wound healing, as well as for treating ischemic diseases such as stroke, heart attack or peripheral arterial diseases. Direct delivery of angiogenic growth factors has the potential to stimulate new blood vessel growth, but is often associated with limitations such as lack of targeting and short half-life in vivo. Gene therapy offers an alternative approach by delivering genes encoding angiogenic factors, but often requires using virus, and is limited by safety concerns. Here we describe a recently developed strategy for stimulating vascular growth by programming stem cells to overexpress angiogenic factors in situ using biodegradable polymeric nanoparticles. Specifically our strategy utilized stem cells as delivery vehicles by taking advantage of their ability to migrate toward ischemic tissues in vivo. Using the optimized polymeric vectors, adipose-derived stem cells were modified to overexpress an angiogenic gene encoding vascular endothelial growth factor (VEGF). We described the processes for polymer synthesis, nanoparticle formation, transfecting stem cells in vitro, as well as methods for validating the efficacy of VEGF-expressing stem cells for promoting angiogenesis in a murine hindlimb ischemia model.

    View details for DOI 10.3791/50736

    View details for PubMedID 24121540

  • Preferential cell response to anisotropic electro-spun fibrous scaffolds under tension-free conditions JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE English, A., Azeem, A., Gaspar, D. A., Keane, K., Kumar, P., Keeney, M., Rooney, N., Pandit, A., Zeugolis, D. I. 2012; 23 (1): 137-148


    Anisotropic alignment of collagen fibres in musculoskeletal tissues is responsible for the resistance to mechanical loading, whilst in cornea is responsible for transparency. Herein, we evaluated the response of tenocytes, osteoblasts and corneal fibroblasts to the topographies created through electro-spinning and solvent casting. We also evaluated the influence of topography on mechanical properties. At day 14, human osteoblasts seeded on aligned orientated electro-spun mats exhibited the lowest metabolic activity (P < 0.001). At day 5 and at day 7, no significant difference was observed in metabolic activity of human corneal fibroblasts and bovine tenocytes respectively seeded on different scaffold conformations (P > 0.05). Osteoblasts and corneal fibroblasts aligned parallel to the direction of the aligned orientated electro-spun mats, whilst tenocytes aligned perpendicular to the aligned orientated electro-spun mats. Mechanical evaluation demonstrated that aligned orientated electro-spun fibres exhibited significant higher stress at break values than their random aligned counterparts (P < 0.006) and random orientated electro-spun fibres exhibited significant higher strain at break values than the aligned orientated scaffolds (P < 0.006). While maintaining fibre structure, we also developed a co-deposition method of spraying and electro-spinning, which enables the incorporation of microspheres within the three-dimensional structure of the scaffold.

    View details for DOI 10.1007/s10856-011-4471-8

    View details for Web of Science ID 000299724300016

    View details for PubMedID 22105221

  • Recent progress in cartilage tissue engineering CURRENT OPINION IN BIOTECHNOLOGY Keeney, M., Lai, J. H., Yang, F. 2011; 22 (5): 734-740


    Despite over two decades of research on cartilage tissue engineering, very few products have moved from bench to bedside and effective therapy remains lacking. This review discusses recent progress in developing novel strategies for engineering cartilage tissues with long-term functionality. Specifically we focus on the following aspects including identifying promising cell sources, designing 3D scaffolds with dynamic and spatially patterned cues to guide desired cellular processes, mimicking zonal organization, integrating with host tissue, and monitoring cell fate and tissue regeneration in situ.

    View details for DOI 10.1016/j.copbio.2011.04.003

    View details for Web of Science ID 000296114600019

    View details for PubMedID 21531126

  • Preparation of Mineralized Nanofibers: Collagen Fibrils Containing Calcium Phosphate NANO LETTERS Maas, M., Guo, P., Keeney, M., Yang, F., Hsu, T. M., Fuller, G. G., Martin, C. R., Zare, R. N. 2011; 11 (3): 1383-1388


    We report a straightforward, bottom-up, scalable process for preparing mineralized nanofibers. Our procedure is based on flowing feed solution, containing both inorganic cations and polymeric molecules, through a nanoporous membrane into a receiver solution with anions, which leads to the formation of mineralized nanofibers at the exit of the pores. With this strategy, we were able to achieve size control of the nanofiber diameters. We illustrate this approach by producing collagen fibrils with calcium phosphate incorporated inside the fibrils. This structure, which resembles the basic constituent of bones, assembles itself without the addition of noncollagenous proteins or their polymeric substitutes. Rheological experiments demonstrated that the stiffness of gels derived from these fibrils is enhanced by mineralization. Growth experiments of human adipose derived stem cells on these gels showed the compatibility of the fibrils in a tissue-regeneration context.

    View details for DOI 10.1021/nl200116d

    View details for Web of Science ID 000288061500082

    View details for PubMedID 21280646

  • Preparation of Mineralized Nanofibers: Collagen Fibrils Containing Calcium Phosphate Nano Letters M. Maas, P. Guo,, M. Keeney, F. Yang, T. M. Hsu, G. G. Fuller, C. R. Martin, R. N. Zare. 2011; Accepted
  • Non-viral polyplexes: Scaffold mediated delivery for gene therapy Progress in Polymer Science S. O Rourke, M. Keeney, A. Pandit 2010; 35 (4): 441
  • A reliable method for detecting complexed DNA in vitro Nanoscale C. Holladay, M. Keeney, B. Newland, A. Mathew, W. Wang, A. Pandit 2010; 12: 2718
  • Collagen/calcium phosphate scaffold acts as its own vector for gene delivery and promotes bone formation via transfection with VEGF165 Biomaterials M. Keeney, JJP. van den Beucken, PM. van der Kraan, JA. Jansen, A. Pandit 2010; 31: 2893
  • The osteochondral junction and its repair via bi-phasic tissue engineering scaffolds Tissue Engineering Part B Reviews M. Keeney, A. Pandit 2009; 15 (1): 55
  • A matrix reservoir for improved control of non-viral gene delivery Journal of Controlled Release C. Holladay, M. Keeney, U. Greiser, M. Murphy, T. O'Brien, A. Pandit 2009; 136 (3): 220
  • Multi-channelled collagen?calcium phosphate scaffolds: Their physical properties and human cell response Tissue Engineering Part C Methods M. Keeney, E. Collin, A. Pandit 2009; 15 (2): 265