All Publications


  • Improving Hospital Readmission Prediction using Individualized Utility Analysis. Journal of biomedical informatics Ko, M., Chen, E., Agrawal, A., Rajpurkar, P., Avati, A., Ng, A., Basu, S., Shah, N. H. 2021: 103826

    Abstract

    Machine learning (ML) models for allocating readmission-mitigating interventions are typically selected according to their discriminative ability, which may not necessarily translate into utility in allocation of resources. Our objective was to determine whether ML models for allocating readmission-mitigating interventions have different usefulness based on their overall utility and discriminative ability.We conducted a retrospective utility analysis of ML models using claims data acquired from the Optum Clinformatics Data Mart, including 513,495 commercially-insured inpatients (mean [SD] age 69 [19] years; 294,895 [57%] Female) over the period January 2016 through January 2017 from all 50 states with mean 90 day cost of $11,552. Utility analysis estimates the cost, in dollars, of allocating interventions for lowering readmission risk based on the reduction in the 90-day cost.Allocating readmission-mitigating interventions based on a GBDT model trained to predict readmissions achieved an estimated utility gain of $104 per patient, and an AUC of 0.76 (95% CI 0.76, 0.77); allocating interventions based on a model trained to predict cost as a proxy achieved a higher utility of $175.94 per patient, and an AUC of 0.62 (95% CI 0.61, 0.62). A hybrid model combining both intervention strategies is comparable with the best models on either metric. Estimated utility varies by intervention cost and efficacy, with each model performing the best under different intervention settings.We demonstrate that machine learning models may be ranked differently based on overall utility and discriminative ability. Machine learning models for allocation of limited health resources should consider directly optimizing for utility.

    View details for DOI 10.1016/j.jbi.2021.103826

    View details for PubMedID 34087428

  • Incorporating machine learning and social determinants of health indicators into prospective risk adjustment for health plan payments. BMC public health Irvin, J. A., Kondrich, A. A., Ko, M., Rajpurkar, P., Haghgoo, B., Landon, B. E., Phillips, R. L., Petterson, S., Ng, A. Y., Basu, S. 2020; 20 (1): 608

    Abstract

    BACKGROUND: Risk adjustment models are employed to prevent adverse selection, anticipate budgetary reserve needs, and offer care management services to high-risk individuals. We aimed to address two unknowns about risk adjustment: whether machine learning (ML) and inclusion of social determinants of health (SDH) indicators improve prospective risk adjustment for health plan payments.METHODS: We employed a 2-by-2 factorial design comparing: (i) linear regression versus ML (gradient boosting) and (ii) demographics and diagnostic codes alone, versus additional ZIP code-level SDH indicators. Healthcare claims from privately-insured US adults (2016-2017), and Census data were used for analysis. Data from 1.02 million adults were used for derivation, and data from 0.26 million to assess performance. Model performance was measured using coefficient of determination (R2), discrimination (C-statistic), and mean absolute error (MAE) for the overall population, and predictive ratio and net compensation for vulnerable subgroups. We provide 95% confidence intervals (CI) around each performance measure.RESULTS: Linear regression without SDH indicators achieved moderate determination (R2 0.327, 95% CI: 0.300, 0.353), error ($6992; 95% CI: $6889, $7094), and discrimination (C-statistic 0.703; 95% CI: 0.701, 0.705). ML without SDH indicators improved all metrics (R2 0.388; 95% CI: 0.357, 0.420; error $6637; 95% CI: $6539, $6735; C-statistic 0.717; 95% CI: 0.715, 0.718), reducing misestimation of cost by $3.5M per 10,000 members. Among people living in areas with high poverty, high wealth inequality, or high prevalence of uninsured, SDH indicators reduced underestimation of cost, improving the predictive ratio by 3% (~$200/person/year).CONCLUSIONS: ML improved risk adjustment models and the incorporation of SDH indicators reduced underpayment in several vulnerable populations.

    View details for DOI 10.1186/s12889-020-08735-0

    View details for PubMedID 32357871

  • CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison Irvin, J., Rajpurkar, P., Ko, M., Yu, Y., Ciurea-Ilcus, S., Chute, C., Marklund, H., Haghgoo, B., Ball, R., Shpanskaya, K., Seekins, J., Mong, D. A., Halabi, S. S., Sandberg, J. K., Jones, R., Larson, D. B., Langlotz, C. P., Patel, B. N., Lungren, M. P., Ng, A. Y., AAAI ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE. 2019: 590–97