Stanford Advisors


All Publications


  • Understanding Scarring in the Oral Mucosa. Advances in wound care Griffin, M., Fahy, E., King, M., Guardino, N., Chen, K., Abbas, D. B., Lavin, C., Diaz Deleon, N. M., Lorenz, H. P., Longaker, M. T., Wan, D. C. 2021

    Abstract

    SIGNIFICANCE: Skin inevitably heals with the formation of a fibrotic scar. Patients affected by skin fibrosis suffer from long-term psychological and physical burdens. Recent Advances: Since the discovery of fetal scarless skin-wound healing, research has hoped to identify and mimic scarless healing for adult skin. Oral mucosa healing in adults provides the closest example to fetal scarless healing. Injuries to the oral mucosa heal with very minimal scarring. Understanding the mechanisms through which this process occurs may bring us closer to achieving scarless healing in adults.CRITICAL ISSUES: In this review, we summarize the current evidence that illustrates distinct mechanisms involved in oral mucosal healing. We discuss the role of the oral niche in contributing to wound repair. The intrinsic properties of immune cells, fibroblasts, and keratinocytes within the oral mucosa that support regenerative repair are provided. We highlight the contribution of cytokines, growth factors, and chemokine secretion in permitting a scarless mucosal environment. Furthermore, we discuss the role of stem cell-like progenitor populations in the mucosa that may contribute to wound healing. We also provide suggestions for future studies that are needed to achieve scarless healing in adults.FUTURE DIRECTIONS: Many characteristics of the oral mucosa have been shown to contribute to decreased scarring, but the specific mechanism(s) is unclear. Advancing our understanding of oral healing may yield therapeutic therapies that can be used to overcome dermal fibrosis and scarring.

    View details for DOI 10.1089/wound.2021.0038

    View details for PubMedID 34470520

  • Standardizing dimensionless cutometer parameters to determine in-vivo elasticity of human skin. Advances in wound care Abbas, D. B., Lavin, C., Fahy, E., Griffin, M., Guardino, N., King, M., Chen, K., Lorenz, H. P., Gurtner, G. C., Longaker, M. T., Momeni, A., Wan, D. C. 2021

    Abstract

    OBJECTIVE: Skin fibrosis places an enormous burden on patients and society, but disagreement exists over methods to quantify severity of skin scarring. A suction cutometer measures skin elasticity in-vivo, but it has not been widely adopted due to inconsistency in data produced. We investigated variability of several dimensionless parameters generated by the cutometer to improve their precision and accuracy.APPROACH: Twenty adult human subjects underwent suction cutometer measurement of normal skin and fibrotic scars. Using Mode 1, each subject underwent 5 trials with each trial containing 4 curves. R0/2/5/6/7 and Q1/2/3 data were collected. Analyses were performed on these calculated parameters.RESULTS: R0/2/5/6/7 and Q1/2 parameters from curves 1-4 demonstrated significant differences, while these same parameters were not significantly different when only using curves 2-4. Individual analysis of all parameters between curve 1 and every subsequent curve was statistically significant for R0, R2, R5, R6, R7, Q1, and Q2. No differences were appreciated for parameter Q3. Comparison between normal skin and fibrotic scars were significantly different for parameters R5, Q1, and Q3.INNOVATION: Our study is the first demonstration of accurate comparison between normal skin and fibrotic scars using the dimensionless parameters of a suction cutometer.CONCLUSION: Measured parameters from the first curve of each trial were significantly different from subsequent curves for both normal skin and fibrotic scars. Precision and reproducibility of data from dimensionless parameters can therefore be improved by removing the first curve. R5, Q1, and Q3 parameters differentiated normal skin as more elastic than fibrotic scars.

    View details for DOI 10.1089/wound.2021.0082

    View details for PubMedID 34470542

  • The role of Wnt signaling in skin fibrosis. Medicinal research reviews Griffin, M. F., Huber, J., Evan, F. J., Quarto, N., Longaker, M. T. 2021

    Abstract

    Skin fibrosis is the excessive deposition of extracellular matrix in the dermis. Cutaneous fibrosis can occur following tissue injury, including burns, trauma, and surgery, resulting in scars that are disfiguring, limit movement and cause significant psychological distress for patients. Many molecular pathways have been implicated in the development of skin fibrosis, yet effective treatments to prevent or reverse scarring are unknown. The Wnt signaling pathways are known to play an important role in skin homeostasis, skin injury, and in the development of fibrotic skin diseases. This review provides a detailed overview of the role of the canonical Wnt signaling pathways in regulating skin scarring. We also discuss how Wnt signaling interacts with other known fibrotic molecular pathways to cause skin fibrosis. We further provide a summary of the different Wnt inhibitor types available for treating skin scarring. Understanding the role of the Wnt pathway in cutaneous fibrosis will accelerate the development of effective Wnt modulators for the treatment of skin fibrosis.

    View details for DOI 10.1002/med.21853

    View details for PubMedID 34431110

  • Decellularized Adipose Matrices can Alleviate Radiation-induced Skin Fibrosis. Advances in wound care Adem, S., Abbas, D. B., Lavin, C., Fahy, E., Griffin, M., Diaz Deleon, N. M., Borrelli, M. R., Mascharak, S., Shen, A. H., Patel, R. A., Longaker, M. T., Nazerali, R. S., Wan, D. C. 2021

    Abstract

    OBJECTIVE: Radiation therapy is commonplace for cancer treatment but often results in fibrosis and atrophy of surrounding soft tissue. Decellularized adipose matrices (DAMs) have been reported to improve these soft tissue defects through the promotion of adipogenesis. These matrices are decellularized by a combination of physical, chemical, and enzymatic methods to minimize their immunologic effects while promoting their regenerative effects. In this study, we aimed to explore the regenerative ability of a DAM (Renuva, MTF Biologics, New Jersey, USA) in radiation-induced soft tissue injury.APPROACH: Fresh human lipoaspirate or DAM was injected into the irradiated scalp of CD-1 nude mice, and volume retention was monitored radiographically over 8 weeks. Explanted grafts were histologically assessed, and overlying skin was examined histologically and biomechanically. Irradiated human skin was also evaluated from patients following fat grafting or DAM injection. However, integrating data between murine and human skin in all cohorts is limited given the genetic variability between the two species.RESULTS: Volume retention was found to be greater with fat grafts, though DAM retention was nonetheless appreciated at irradiated sites. Improvement in both mouse and human irradiated skin overlying fat and DAM grafts was observed in terms of biomechanical stiffness, dermal thickness, collagen density, collagen fiber networks, and skin vascularity.INNOVATION: This is the first demonstration of the use of DAMs for augmenting the regenerative potential of irradiated mouse and human skin.CONCLUSIONS: These findings support use of DAMs to address soft tissue atrophy following radiation therapy. Morphological characteristics of the irradiated skin can also be improved with DAM grafting.

    View details for DOI 10.1089/wound.2021.0008

    View details for PubMedID 34346243

  • Mechanical Strain Drives Myeloid Cell Differentiation Toward Pro-Inflammatory Subpopulations. Advances in wound care Chen, K., Henn, D., Sivaraj, D., Bonham, C. A., Griffin, M., Choi Kussie, H., Padmanabhan, J., Trotsyuk, A. A., Wan, D. C., Januszyk, M., Longaker, M. T., Gurtner, G. C. 2021

    Abstract

    OBJECTIVE: After injury, humans and other mammals heal by forming fibrotic scar tissue with diminished function, and this healing process involves the dynamic interplay between resident cells within the skin and cells recruited from the circulation. Recent studies have provided mounting evidence that external mechanical forces stimulate intracellular signaling pathways to drive fibrotic processes.INNOVATION: While most studies have focused on studying mechanotransduction in fibroblasts, recent data suggest that mechanical stimulation may also shape the behavior of immune cells, referred to as "mechano-immunomodulation". However, the effect of mechanical strain on myeloid cell recruitment and differentiation remains poorly understood and has never been investigated at the single cell level.APPROACH: In this study, we utilized a three-dimensional (3D) in vitro culture system that permits the precise manipulation of mechanical strain applied to cells. We cultured myeloid cells and used single cell RNA-sequencing to interrogate the effects of strain on myeloid differentiation and transcriptional programming.RESULTS: Our data indicate that myeloid cells are indeed mechanoresponsive, with mechanical stress influencing myeloid differentiation. Mechanical strain also upregulated a cascade of inflammatory chemokines, most notably from the Ccl family.CONCLUSION: Further understanding of how mechanical stress affects myeloid cells in conjunction with other cell types in the complicated, multicellular milieu of wound healing may lead to novel insights and therapies for the treatment of fibrosis.

    View details for DOI 10.1089/wound.2021.0036

    View details for PubMedID 34278820

  • Readability of Online Patient Information Relating to Cleft Palate Surgery. The Cleft palate-craniofacial journal : official publication of the American Cleft Palate-Craniofacial Association Lavin, C. V., Fahy, E. J., Abbas, D. B., Griffin, M., Deleon, N. M., Lee, D. K., Khosla, R. K., Bruckman, K., Lorenz, H. P., Wan, D. C. 2021: 10556656211013177

    Abstract

    OBJECTIVE: It is important for health care education materials to be easily understood by caretakers of children requiring craniofacial surgery. This study aimed to analyze the readability of Google search results as they pertain to "Cleft Palate Surgery" and "Palatoplasty." Additionally, the study included a search from several locations globally to identify possible geographic differences.DESIGN: Google searches of the terms "Cleft Palate Surgery" and "Palatoplasty" were performed. Additionally, searches of only "Cleft Palate Surgery" were run from several internet protocol addresses globally.MAIN OUTCOME MEASURES: Flesch-Kincaid Grade Level and Readability Ease, Gunning Fog Index, Simple Measure of Gobbledygook (SMOG) index, and Coleman-Liau Index.RESULTS: Search results for "Cleft Palate Surgery" were easier to read and comprehend compared to search results for "Palatoplasty." Mean Flesch-Kincaid Grade Level scores were 7.0 and 10.11, respectively (P = .0018). Mean Flesch-Kincaid Reading Ease scores were 61.29 and 40.71, respectively (P = .0003). Mean Gunning Fog Index scores were 8.370 and 10.34, respectively (P = .0458). Mean SMOG Index scores were 6.84 and 8.47, respectively (P = .0260). Mean Coleman-Liau Index scores were 12.95 and 15.33, respectively (P = .0281). No significant differences were found in any of the readability measures based on global location.CONCLUSIONS: Although some improvement can be made, craniofacial surgeons can be confident in the online information pertaining to cleft palate repair, regardless of where the search is performed from. The average readability of the top search results for "Cleft Palate Surgery" is around the seventh-grade reading level (US educational system) and compares favorably to other health care readability analyses.

    View details for DOI 10.1177/10556656211013177

    View details for PubMedID 33960204

  • Wnt-active Engrailed-1 Lineage-negative Fibroblasts Mediate Postnatal Skin Regeneration Mascharak, S., desJardins-Park, H. E., Januszyk, M., Chen, K., Davitt, M. F., Demeter, J., Henn, D., Griffin, M., Bonham, C. A., Mooney, N., Cheng, R., Jackson, P. K., Wan, D. C., Gurtner, G. C., Longaker, M. T. WILEY. 2021: A30
  • Single Cell RNA Sequencing Reveals Fibroblast Heterogeneity Across Embryonic Origins Of Skin Griffin, M., King, M., Chen, K., desJardins-Park, H., Mascharak, S., Fahy, E., Guardino, N., Lavin, C., Abbas, D., Januszyk, M., Wan, D., Longaker, M. WILEY. 2021: A11-A12
  • Novel Genetic Analysis Of MRL Mice Reveals That Complement Inhibition By Factor H Reduces Scarring desJardins-Park, H. E., Mack, K. L., Guardino, N., Griffin, M., Davitt, M. F., Mascharak, S., Wan, D. C., Fraser, H. B., Longaker, M. T. WILEY. 2021: A13
  • Adipocytes In Dermal Wounds Undergo Conversion To Pro-fibrotic Fibroblasts That Contribute To Scar Formation Guardino, N., desJardins-Park, H. E., Griffin, M., Bauer-Rowe, K. E., King, M. E., King, M. E., Mascharak, S., Longaker, M. T. WILEY. 2021: A31
  • Transgenic Inhibition Of Engrailed-1 Results In Endogenous Postnatal Skin Regeneration Mascharak, S., desJardins-Park, H. E., Davitt, M. F., Chen, K., Griffin, M., Guardino, N., Lorenz, H., Wan, D. C., Gurtner, G. C., Longaker, M. T. WILEY. 2021: A14-A15
  • Preventing Engrailed-1 activation in fibroblasts yields wound regeneration without scarring. Science (New York, N.Y.) Mascharak, S., desJardins-Park, H. E., Davitt, M. F., Griffin, M., Borrelli, M. R., Moore, A. L., Chen, K., Duoto, B., Chinta, M., Foster, D. S., Shen, A. H., Januszyk, M., Kwon, S. H., Wernig, G., Wan, D. C., Lorenz, H. P., Gurtner, G. C., Longaker, M. T. 2021; 372 (6540)

    Abstract

    Skin scarring, the end result of adult wound healing, is detrimental to tissue form and function. Engrailed-1 lineage-positive fibroblasts (EPFs) are known to function in scarring, but Engrailed-1 lineage-negative fibroblasts (ENFs) remain poorly characterized. Using cell transplantation and transgenic mouse models, we identified a dermal ENF subpopulation that gives rise to postnatally derived EPFs by activating Engrailed-1 expression during adult wound healing. By studying ENF responses to substrate mechanics, we found that mechanical tension drives Engrailed-1 activation via canonical mechanotransduction signaling. Finally, we showed that blocking mechanotransduction signaling with either verteporfin, an inhibitor of Yes-associated protein (YAP), or fibroblast-specific transgenic YAP knockout prevents Engrailed-1 activation and promotes wound regeneration by ENFs, with recovery of skin appendages, ultrastructure, and mechanical strength. This finding suggests that there are two possible outcomes to postnatal wound healing: a fibrotic response (EPF-mediated) and a regenerative response (ENF-mediated).

    View details for DOI 10.1126/science.aba2374

    View details for PubMedID 33888614

  • PRISMA 2020 statement: What's new and the importance of reporting guidelines. International journal of surgery (London, England) Sohrabi, C., Franchi, T., Mathew, G., Kerwan, A., Nicola, M., Griffin, M., Agha, M., Agha, R. 2021: 105918

    Abstract

    The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement, first published in 2009 [1], was developed in an attempt to increase the clarity, transparency, quality and value of these reports [2]. The 27-item checklist and four-phase flow diagram have become the hallmark of academic rigour in the publication of systematic reviews and meta-analyses, having been cited by over 60,000 papers [3]. These are frequently endorsed by journals in their 'Instructions to Authors' [4]. Developments in the methodology and terminology used when conducting systematic reviews [5], alongside the identification of limitations responsible for poor adherence, such as the use of ambiguous wording [6], have warranted an update to the PRISMA statement. The PRISMA 2020 statement, therefore, is intended to reflect this recent evolution in the identification, selection, appraisal and synthesis of research [7]. Here, we present an interpretive analysis of the updated statement, with a view towards encouraging its adoption by both journals and authors in the pursuit of advancing evidence-based medicine.

    View details for DOI 10.1016/j.ijsu.2021.105918

    View details for PubMedID 33789825

  • Impact of the coronavirus (COVID-19) pandemic on scientific research and implications for clinical academic training - a review. International journal of surgery (London, England) Sohrabi, C. n., Mathew, G. n., Franchi, T. n., Kerwan, A. n., Griffin, M. n., Soleil C Del Mundo, J. n., Ali, S. A., Agha, M. n., Agha, R. n. 2021

    Abstract

    A pneumonia outbreak of unknown aetiology emerged in Wuhan, China in December 2019. The causative organism was identified on the 7th of January 2020 as a novel coronavirus (nCoV or 2019-nCoV), later renamed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The resulting coronavirus (COVID-19) disease has infected over 37 57.8 million individuals, resulted in over 1 1.3 million deaths, and has led to an unprecedented impact on research activities worldwide. Extraordinary challenges have also been imposed upon medical and surgical trainees following re-deployment to full-time clinical duties. Moreover, the introduction of travel restrictions and strict lockdown measures have forced the closure of many institutions and laboratories working on research unrelated to the pandemic. The lockdown has similarly stifled supply chains and slowed research and development endeavours, whilst research charities have endured significant financial strains that have since reshaped the allocation and availability of funds. Worldwide scientific adaptation to the COVID-19 pandemic has also been observed through unprecedented levels of international collaboration as well as the uprise of remote telecommunication platforms. Although the long-term consequence of the COVID-19 pandemic on research and academic training is difficult to ascertain, the current crises will inevitably shape working and teaching patterns for years to come. To this end, we provide a comprehensive and critical evaluation of the impact of COVID-19 on scientific research and funding, as well as academic medical and surgical training.

    View details for DOI 10.1016/j.ijsu.2020.12.008

    View details for PubMedID 33444873

  • Striae Distensae: Scars without Wounds. Plastic and reconstructive surgery Borrelli, M. R., Griffin, M., Ngaage, L. M., Longaker, M. T., Lorenz, H. P. 2021; 148 (1): 77-87

    Abstract

    Striae distensae, or stretch marks, are common linear lesions of atrophic skin characterized histologically by epidermal atrophy, absent rete ridges, and alterations in connective tissue architecture. Hormonal excess, mechanical stress, and genetic predisposition are all associated with striae distensae, but their exact pathogenesis remains unknown. Despite a multitude of options, no single treatment has yet proven effective. In this article, the authors describe an up-to-date overview of striae distensae in terms of their etiology, pathophysiology, and therapeutic options. Further research is required to better elucidate their pathophysiology and to develop targeted effective treatments.

    View details for DOI 10.1097/PRS.0000000000008065

    View details for PubMedID 34181606

  • Disrupting biological sensors of force promotes tissue regeneration in large organisms. Nature communications Chen, K., Kwon, S. H., Henn, D., Kuehlmann, B. A., Tevlin, R., Bonham, C. A., Griffin, M., Trotsyuk, A. A., Borrelli, M. R., Noishiki, C., Padmanabhan, J., Barrera, J. A., Maan, Z. N., Dohi, T., Mays, C. J., Greco, A. H., Sivaraj, D., Lin, J. Q., Fehlmann, T., Mermin-Bunnell, A. M., Mittal, S., Hu, M. S., Zamaleeva, A. I., Keller, A., Rajadas, J., Longaker, M. T., Januszyk, M., Gurtner, G. C. 2021; 12 (1): 5256

    Abstract

    Tissue repair and healing remain among the most complicated processes that occur during postnatal life. Humans and other large organisms heal by forming fibrotic scar tissue with diminished function, while smaller organisms respond with scarless tissue regeneration and functional restoration. Well-established scaling principles reveal that organism size exponentially correlates with peak tissue forces during movement, and evolutionary responses have compensated by strengthening organ-level mechanical properties. How these adaptations may affect tissue injury has not been previously examined in large animals and humans. Here, we show that blocking mechanotransduction signaling through the focal adhesion kinase pathway in large animals significantly accelerates wound healing and enhances regeneration of skin with secondary structures such as hair follicles. In human cells, we demonstrate that mechanical forces shift fibroblasts toward pro-fibrotic phenotypes driven by ERK-YAP activation, leading to myofibroblast differentiation and excessive collagen production. Disruption of mechanical signaling specifically abrogates these responses and instead promotes regenerative fibroblast clusters characterized by AKT-EGR1.

    View details for DOI 10.1038/s41467-021-25410-z

    View details for PubMedID 34489407

  • The Adrenergic System in Plastic and Reconstructive Surgery: Physiology and Clinical Considerations. Annals of plastic surgery Fahy, E. J., Griffin, M. n., Lavin, C. n., Abbas, D. n., Longaker, M. T., Wan, D. n. 2021

    Abstract

    The primary organ systems and tissues concerning plastic and reconstructive surgery include the integument, vasculature, subcutis, and peripheral nerves, because these may individually or collectively be injured requiring reconstruction, or indeed be used in reconstruction themselves through grafts, flaps, or anastomoses. Adrenergic receptors are present throughout these anatomic components on the vasculature, adipose, platelets, immune cells, keratinocytes, melanocytes, fibroblasts, peripheral nerves, and tendons. Herein, the influence of adrenergic signaling on the physiology of anatomic components related to plastic surgery is discussed, along with clinical considerations of this systems involvement in procedures, such as free flap reconstruction, skin grafting, fat grafting, and other areas relevant to plastic and reconstructive surgery. Current evidence as well as potential for further investigation is discussed.

    View details for DOI 10.1097/SAP.0000000000002706

    View details for PubMedID 33833152

  • Preparing for COVID-19 exit strategies. Annals of medicine and surgery (2012) Griffin, M., Sohrabi, C., Alsafi, Z., Nicola, M., Kerwan, A., Mathew, G., Agha, R. 2021; 61: 88–92

    Abstract

    The COVID-19 pandemic has affected 20 million people worldwide with over 732,000 deaths and trillions of dollars of lost economic productivity. It has put many countries into lockdown to contain the virus and save lives. As COVID-19 cases in some countries start to plateau and societies work hard to 'flatten the curve', leaders are being asked to formulate plans for safe and staged 'exit strategies' to reopen society. Each country will decide on their own exit strategy but many plans are considering similar vital healthcare principles including the maintenance of social distancing to prevent ongoing community transmission, testing capacity, protection of the healthcare systems and the health of their care workers. This review aims to provide an overview of essential factors that plans for exit strategy should consider and their effect on the societies' social and healthcare life.

    View details for DOI 10.1016/j.amsu.2020.12.012

    View details for PubMedID 33391762

  • Exosomes - a tool for bone tissue engineering. Tissue engineering. Part B, Reviews Huber, J. L., Griffin, M., Longaker, M. T., Quarto, N. 2020

    Abstract

    Mesenchymal stem cells (MSC) have been repeatedly shown to be a valuable source for cell-based therapy in regenerative medicine, including bony tissue repair. However, engraftment at the injury site is poor. Recently, it has been suggested that MSCs and other cells act via a paracrine signaling mechanism. Exosomes are nanostructures that have been implicated in this process. They carry DNA, RNA, proteins and lipids and play an important role in cell-to-cell communication directly modulating their target cell at a transcriptional level. In a bone microenvironment, they have been shown to increase osteogenesis and osteogenic differentiation in vivo and in vitro. In the following review, we will discuss the most advanced and significant knowledge of biological functions of exosomes in bone regeneration and their clinical applications in osseous diseases.

    View details for DOI 10.1089/ten.TEB.2020.0246

    View details for PubMedID 33297857

  • Prrx1 Fibroblasts Represent a Pro-fibrotic Lineage in the Mouse Ventral Dermis. Cell reports Leavitt, T., Hu, M. S., Borrelli, M. R., Januszyk, M., Garcia, J. T., Ransom, R. C., Mascharak, S., desJardins-Park, H. E., Litzenburger, U. M., Walmsley, G. G., Marshall, C. D., Moore, A. L., Duoto, B., Adem, S., Foster, D. S., Salhotra, A., Shen, A. H., Griffin, M., Shen, E. Z., Barnes, L. A., Zielins, E. R., Maan, Z. N., Wei, Y., Chan, C. K., Wan, D. C., Lorenz, H. P., Chang, H. Y., Gurtner, G. C., Longaker, M. T. 2020; 33 (6): 108356

    Abstract

    Fibroblast heterogeneity has been shown within the unwounded mouse dorsal dermis, with fibroblast subpopulations being identified according to anatomical location and embryonic lineage. Using lineage tracing, we demonstrate that paired related homeobox 1 (Prrx1)-expressing fibroblasts are responsible for acute and chronic fibroses in the ventral dermis. Single-cell transcriptomics further corroborated the inherent fibrotic characteristics of Prrx1 fibroblasts during wound repair. In summary, we identify and characterize a fibroblast subpopulation in the mouse ventral dermis with intrinsic scar-forming potential.

    View details for DOI 10.1016/j.celrep.2020.108356

    View details for PubMedID 33176144

  • Elucidating Molecular Drivers of Wound Regeneration in MRL Mice Via Novel Transcriptomic Analyses desJardins-Park, H. E., Mack, K. L., Davitt, M. F., Griffin, M., Mascharak, S., Fraser, H. B., Longaker, M. T. ELSEVIER SCIENCE INC. 2020: S225
  • A Surgical Model for Investigating the Role of Creeping Fat in Intestinal Fibrosis Bauer-Rowe, K. E., Foster, D., Titan, A., Chinta, M., desJardins-Park, H., Griffin, M., Longaker, M. T. ELSEVIER SCIENCE INC. 2020: S50–S51
  • Harnessing novel gene expression analyses to identify drivers of regenerative ear wound healing in MRL mice desJardins-Park, H. E., Mack, K. L., Davitt, M. F., Griffin, M., Fraser, H. B., Longaker, M. T. WILEY. 2020: S25
  • Impact of the Coronavirus (COVID-19) pandemic on surgical practice - Part 2 (surgical prioritisation) INTERNATIONAL JOURNAL OF SURGERY Al-Jabir, A., Kerwan, A., Nicola, M., Alsafi, Z., Khan, M., Sohrabi, C., O'Neill, N., Iosifidis, C., Griffin, M., Mathew, G., Agha, R. 2020; 79: 233–48
  • Stretch marks are abundant in CD26-positive human dermal fibroblasts and exhibit increased profibrotic mechanosensitive signaling Borrelli, M. R., Griffin, M., Ngaage, L. M., Mascharak, S., Lewis, N., Januszyk, M., Wan, D. C., Longaker, M. T., Lorenz, H. P. WILEY. 2020: S32
  • Health Policy and Leadership Models During the COVID-19 Pandemic- Review Article. International journal of surgery (London, England) Nicola, M. n., Sohrabi, C. n., Mathew, G. n., Kerwan, A. n., Al-Jabir, A. n., Griffin, M. n., Agha, M. n., Agha, R. n. 2020

    Abstract

    On 11th March 2020, the spread of the SARS-CoV-2 virus was declared a pandemic by the World Health Organisation (WHO). Approximately 5.6 million have now been infected and over 350,000 have died. This global public health crisis has since cascaded into a series of challenges for leaders around the world, threatening both the health and economy of populations. This paper attempts to compartmentalise leadership aspects, allowing a closer examination of reports and the analysis of outcomes. The authors are thus enabled to formulate a number of evidence-based recommendations on the de-escalation of restrictions.

    View details for DOI 10.1016/j.ijsu.2020.07.026

    View details for PubMedID 32687873

  • Understanding the impact of fibroblast heterogeneity on skin fibrosis. Disease models & mechanisms Griffin, M. F., desJardins-Park, H. E., Mascharak, S. n., Borrelli, M. R., Longaker, M. T. 2020; 13 (6)

    Abstract

    Tissue fibrosis is the deposition of excessive extracellular matrix and can occur as part of the body's natural wound healing process upon injury, or as a consequence of diseases such as systemic sclerosis. Skin fibrosis contributes to significant morbidity due to the prevalence of injuries resulting from trauma and burn. Fibroblasts, the principal cells of the dermis, synthesize extracellular matrix to maintain the skin during homeostasis and also play a pivotal role in all stages of wound healing. Although it was previously believed that fibroblasts are homogeneous and mostly quiescent cells, it has become increasingly recognized that numerous fibroblast subtypes with unique functions and morphologies exist. This Review provides an overview of fibroblast heterogeneity in the mammalian dermis. We explain how fibroblast identity relates to their developmental origin, anatomical site and precise location within the skin tissue architecture in both human and mouse dermis. We discuss current evidence for the varied functionality of fibroblasts within the dermis and the relationships between fibroblast subtypes, and explain the current understanding of how fibroblast subpopulations may be controlled through transcriptional regulatory networks and paracrine communications. We consider how fibroblast heterogeneity can influence wound healing and fibrosis, and how insight into fibroblast heterogeneity could lead to novel therapeutic developments and targets for skin fibrosis. Finally, we contemplate how future studies should be shaped to implement knowledge of fibroblast heterogeneity into clinical practice in order to lessen the burden of skin fibrosis.

    View details for DOI 10.1242/dmm.044164

    View details for PubMedID 32541065

  • Impact of the Coronavirus (COVID-19) pandemic on surgical practice - Part 1 (Review Article). International journal of surgery (London, England) Al-Jabir, A. n., Kerwan, A. n., Nicola, M. n., Alsafi, Z. n., Khan, M. n., Sohrabi, C. n., O'Neill, N. n., Iosifidis, C. n., Griffin, M. n., Mathew, G. n., Agha, R. n. 2020

    Abstract

    The Coronavirus (COVID-19) pandemic has resulted in over 2.3 million confirmed cases and over 160,000 deaths. The impact of COVID-19 on surgical practice is widespread ranging from workforce and staffing issues, procedural prioritisation, viral transmission risk intraoperatively, changes to perioperative practice and ways of working alongside the impact on surgical education and training. Whilst there has been a growing literature base describing the early clinical course of COVID-19 and on aspects of critical care related to treating these patients, there has been a dearth of evidence on how this pandemic will affect surgical practice. This paper seeks to review the current evidence and offers recommendations for changes to surgical practice to minimise the effect of the COVID-19 pandemic.

    View details for DOI 10.1016/j.ijsu.2020.05.022

    View details for PubMedID 32407799

    View details for PubMedCentralID PMC7214340

  • Impact of the coronavirus (COVID-19) pandemic on surgical practice - Part 2 (surgical prioritisation). International journal of surgery (London, England) Al-Jabir, A. n., Kerwan, A. n., Nicola, M. n., Alsafi, Z. n., Khan, M. n., Sohrabi, C. n., O'Neill, N. n., Iosifidis, C. n., Griffin, M. n., Mathew, G. n., Agha, R. n. 2020

    Abstract

    The Coronavirus (COVID-19) Pandemic represents a once in a century challenge to human healthcare with 2.4 million cases and 165,000 deaths thus far. Surgical practice has been significantly impacted with all specialties writing guidelines for how to manage during this crisis. All specialties have had to triage the urgency of their daily surgical procedures and consider non-surgical management options where possible. The Pandemic has had ramifications for ways of working, surgical techniques, open vs minimally invasive, theatre workflow, patient and staff safety, training and education. With guidelines specific to each specialty being implemented and followed, surgeons should be able to continue to provide safe and effective care to their patients during the COVID-19 pandemic. In this comprehensive and up to date review we assess changes to working practices through the lens of each surgical specialty.

    View details for DOI 10.1016/j.ijsu.2020.05.002

    View details for PubMedID 32413502

    View details for PubMedCentralID PMC7217115

  • The regenerative role of adipose-derived stem cells (ADSC) in plastic and reconstructive surgery INTERNATIONAL WOUND JOURNAL Naderi, N., Combellack, E. J., Griffin, M., Sedaghati, T., Javed, M., Findlay, M. W., Wallace, C. G., Mosahebi, A., Butler, P. E., Seifalian, A. M., Whitaker, I. S. 2017; 14 (1): 112-124

    Abstract

    The potential use of stem cell-based therapies for the repair and regeneration of various tissues and organs offers a paradigm shift in plastic and reconstructive surgery. The use of either embryonic stem cells (ESC) or induced pluripotent stem cells (iPSC) in clinical situations is limited because of regulations and ethical considerations even though these cells are theoretically highly beneficial. Adult mesenchymal stem cells appear to be an ideal stem cell population for practical regenerative medicine. Among these cells, adipose-derived stem cells (ADSC) have the potential to differentiate the mesenchymal, ectodermal and endodermal lineages and are easy to harvest. Additionally, adipose tissue yields a high number of ADSC per volume of tissue. Based on this background knowledge, the purpose of this review is to summarise and describe the proliferation and differentiation capacities of ADSC together with current preclinical data regarding the use of ADSC as regenerative tools in plastic and reconstructive surgery.

    View details for DOI 10.1111/iwj.12569

    View details for Web of Science ID 000392919100017

    View details for PubMedID 26833722