Boards, Advisory Committees, Professional Organizations
-
Member, Stanford Biology Postdoc Committee (2022 - Present)
-
Member, Stanford Biology Diversity, Equity, Inclusion and Belonging Committee (2023 - Present)
Professional Education
-
Ph.D., Cornell University, Applied and Engineering Physics (2021)
All Publications
-
Tissue-specific in vivo transformation of plasmid DNA in Neotropical tadpoles using electroporation.
PloS one
2023; 18 (8): e0289361
Abstract
Electroporation is an increasingly common technique used for exogenous gene expression in live animals, but protocols are largely limited to traditional laboratory organisms. The goal of this protocol is to test in vivo electroporation techniques in a diverse array of tadpole species. We explore electroporation efficiency in tissue-specific cells of five species from across three families of tropical frogs: poison frogs (Dendrobatidae), cryptic forest/poison frogs (Aromobatidae), and glassfrogs (Centrolenidae). These species are well known for their diverse social behaviors and intriguing physiologies that coordinate chemical defenses, aposematism, and/or tissue transparency. Specifically, we examine the effects of electrical pulse and injection parameters on species- and tissue-specific transfection of plasmid DNA in tadpoles. After electroporation of a plasmid encoding green fluorescent protein (GFP), we found strong GFP fluorescence within brain and muscle cells that increased with the amount of DNA injected and electrical pulse number. We discuss species-related challenges, troubleshooting, and outline ideas for improvement. Extending in vivo electroporation to non-model amphibian species could provide new opportunities for exploring topics in genetics, behavior, and organismal biology.
View details for DOI 10.1371/journal.pone.0289361
View details for PubMedID 37590232
-
Whole-brain optical access in a small adult vertebrate with two- and three-photon microscopy
ISCIENCE
2022; 25 (10): 105191
Abstract
Although optical microscopy has allowed scientists to study the entire brain in early developmental stages, access to the brains of live, adult vertebrates has been limited. Danionella, a genus of miniature, transparent fish closely related to zebrafish has been introduced as a neuroscience model to study the adult vertebrate brain. However, the extent of optically accessible depth in these animals has not been quantitatively characterized. Here, we show that both two- and three-photon microscopy can access the entire depth and rostral-caudal extent of the adult wildtype Danionella dracula brain without any modifications to the animal other than mechanical stabilization. Three-photon microscopy provides higher signal-to-background ratio and optical sectioning of fluorescently labeled vasculature through the deepest part of the brain, the hypothalamus. Hence, we use multiphoton microscopy to penetrate the entire adult brain within the geometry of this genus' head structures and without the need for pigment removal.
View details for DOI 10.1016/j.isci.2022.105191
View details for Web of Science ID 000869487400006
View details for PubMedID 36248737
View details for PubMedCentralID PMC9557827