Graduate and Fellowship Programs
-
Biology (School of Humanities and Sciences) (Phd Program)
All Publications
-
Sex-specific variation in species interactions matters in ecological communities.
Trends in ecology & evolution
2024
Abstract
Understanding how natural communities and ecosystems are structured and respond to anthropogenic pressures in a rapidly changing world is key to successful management and conservation. A fundamental but often overlooked biological characteristic of organisms is sex. Sex-based responses are often considered when conducting studies at organismal and population levels, but are rarely investigated in community ecology. Focusing on kelp forests as a model system, and through a review of other marine and terrestrial ecosystems, we found evidence of widespread sex-based variation in species interactions. Sex-based variation in species interactions is expected to affect ecosystem structure and functioning via multiple trophic and nontrophic pathways. Understanding the drivers and consequences of sex-based variation in species interactions can inform more effective management and restoration.
View details for DOI 10.1016/j.tree.2024.07.006
View details for PubMedID 39107207
-
Salmon shark seasonal site fidelity demonstrates the influence of scale on identifying potential high-use areas and vulnerabilities
MARINE ECOLOGY PROGRESS SERIES
2024; 735: 125-140
View details for DOI 10.3354/meps14565
View details for Web of Science ID 001214316400004
-
Multi-taxa marine isoscapes provide insight into large-scale trophic dynamics in the North Pacific
PROGRESS IN OCEANOGRAPHY
2023; 213
View details for DOI 10.1016/j.pocean.2023.103005
View details for Web of Science ID 000951891000001
-
Emergent research and priorities for shark and ray conservation
ENDANGERED SPECIES RESEARCH
2022; 47: 171-203
View details for DOI 10.3354/esr01169
View details for Web of Science ID 000790066600013
-
An illicit artisanal fishery for North Pacific white sharks indicates frequent occurrence and high mortality in the Gulf of California
CONSERVATION LETTERS
2021
View details for DOI 10.1111/conl.12796
View details for Web of Science ID 000621570100001
-
Reverse diel vertical movements of oceanic manta rays off the northern coast of Peru and implications for conservation
ECOLOGICAL SOLUTIONS AND EVIDENCE
2021; 2 (1)
View details for DOI 10.1002/2688-8319.12051
View details for Web of Science ID 000809441900021
-
Eating or Meeting? Cluster Analysis Reveals Intricacies of White Shark (Carcharodon carcharias) Migration and Offshore Behavior
PLOS ONE
2012; 7 (10)
Abstract
Elucidating how mobile ocean predators utilize the pelagic environment is vital to understanding the dynamics of oceanic species and ecosystems. Pop-up archival transmitting (PAT) tags have emerged as an important tool to describe animal migrations in oceanic environments where direct observation is not feasible. Available PAT tag data, however, are for the most part limited to geographic position, swimming depth and environmental temperature, making effective behavioral observation challenging. However, novel analysis approaches have the potential to extend the interpretive power of these limited observations. Here we developed an approach based on clustering analysis of PAT daily time-at-depth histogram records to distinguish behavioral modes in white sharks (Carcharodon carcharias). We found four dominant and distinctive behavioral clusters matching previously described behavioral patterns, including two distinctive offshore diving modes. Once validated, we mapped behavior mode occurrence in space and time. Our results demonstrate spatial, temporal and sex-based structure in the diving behavior of white sharks in the northeastern Pacific previously unrecognized including behavioral and migratory patterns resembling those of species with lek mating systems. We discuss our findings, in combination with available life history and environmental data, and propose specific testable hypotheses to distinguish between mating and foraging in northeastern Pacific white sharks that can provide a framework for future work. Our methodology can be applied to similar datasets from other species to further define behaviors during unobservable phases.
View details for DOI 10.1371/journal.pone.0047819
View details for Web of Science ID 000310705300018
View details for PubMedID 23144707
View details for PubMedCentralID PMC3483152